Jonathan E. Murray, Laura Warwick, Helen Brindley, Alan Last, Patrick Quigley, Andy Rochester, Alexander Dewar, Daniel Cummins
{"title":"地表发射率远红外光谱仪(FINESSE)--第 1 部分:仪器说明和 1 级辐射量","authors":"Jonathan E. Murray, Laura Warwick, Helen Brindley, Alan Last, Patrick Quigley, Andy Rochester, Alexander Dewar, Daniel Cummins","doi":"10.5194/amt-17-4757-2024","DOIUrl":null,"url":null,"abstract":"Abstract. The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) instrument combines a commercial Bruker EM27 spectrometer with a front-end viewing and calibration rig developed at Imperial College London. FINESSE is specifically designed to enable accurate measurements of surface emissivity, covering the range 400–1600 cm−1, and, as part of this remit, can obtain views over the full 360° angular range. In this part, Part 1, we describe the system configuration, outlining the instrument spectral characteristics, our data acquisition methodology, and the calibration strategy. As part of the process, we evaluate the stability of the system, including the impact of knowledge of blackbody (BB) target emissivity and temperature. We also establish a numerical description of the instrument line shape (ILS), which shows strong frequency-dependent asymmetry. We demonstrate why it is important to account for these effects by assessing their impact on the overall uncertainty budget on the level 1 radiance products from FINESSE. Initial comparisons of observed spectra with simulations show encouraging performance given the uncertainty budget.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"73 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) – Part 1: Instrument description and level 1 radiances\",\"authors\":\"Jonathan E. Murray, Laura Warwick, Helen Brindley, Alan Last, Patrick Quigley, Andy Rochester, Alexander Dewar, Daniel Cummins\",\"doi\":\"10.5194/amt-17-4757-2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) instrument combines a commercial Bruker EM27 spectrometer with a front-end viewing and calibration rig developed at Imperial College London. FINESSE is specifically designed to enable accurate measurements of surface emissivity, covering the range 400–1600 cm−1, and, as part of this remit, can obtain views over the full 360° angular range. In this part, Part 1, we describe the system configuration, outlining the instrument spectral characteristics, our data acquisition methodology, and the calibration strategy. As part of the process, we evaluate the stability of the system, including the impact of knowledge of blackbody (BB) target emissivity and temperature. We also establish a numerical description of the instrument line shape (ILS), which shows strong frequency-dependent asymmetry. We demonstrate why it is important to account for these effects by assessing their impact on the overall uncertainty budget on the level 1 radiance products from FINESSE. Initial comparisons of observed spectra with simulations show encouraging performance given the uncertainty budget.\",\"PeriodicalId\":8619,\"journal\":{\"name\":\"Atmospheric Measurement Techniques\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Measurement Techniques\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/amt-17-4757-2024\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/amt-17-4757-2024","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) – Part 1: Instrument description and level 1 radiances
Abstract. The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) instrument combines a commercial Bruker EM27 spectrometer with a front-end viewing and calibration rig developed at Imperial College London. FINESSE is specifically designed to enable accurate measurements of surface emissivity, covering the range 400–1600 cm−1, and, as part of this remit, can obtain views over the full 360° angular range. In this part, Part 1, we describe the system configuration, outlining the instrument spectral characteristics, our data acquisition methodology, and the calibration strategy. As part of the process, we evaluate the stability of the system, including the impact of knowledge of blackbody (BB) target emissivity and temperature. We also establish a numerical description of the instrument line shape (ILS), which shows strong frequency-dependent asymmetry. We demonstrate why it is important to account for these effects by assessing their impact on the overall uncertainty budget on the level 1 radiance products from FINESSE. Initial comparisons of observed spectra with simulations show encouraging performance given the uncertainty budget.
期刊介绍:
Atmospheric Measurement Techniques (AMT) is an international scientific journal dedicated to the publication and discussion of advances in remote sensing, in-situ and laboratory measurement techniques for the constituents and properties of the Earth’s atmosphere.
The main subject areas comprise the development, intercomparison and validation of measurement instruments and techniques of data processing and information retrieval for gases, aerosols, and clouds. The manuscript types considered for peer-reviewed publication are research articles, review articles, and commentaries.