用 OF-CEAS 激光光谱法测量干燥环境中的水同位素:南极洲应用实例

IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric Measurement Techniques Pub Date : 2024-08-15 DOI:10.5194/egusphere-2024-2149
Thomas Lauwers, Elise Fourré, Olivier Jossoud, Daniele Romanini, Frédéric Prié, Giordano Nitti, Mathieu Casado, Kévin Jaulin, Markus Miltner, Morgane Farradèche, Valérie Masson-Delmotte, Amaëlle Landais
{"title":"用 OF-CEAS 激光光谱法测量干燥环境中的水同位素:南极洲应用实例","authors":"Thomas Lauwers, Elise Fourré, Olivier Jossoud, Daniele Romanini, Frédéric Prié, Giordano Nitti, Mathieu Casado, Kévin Jaulin, Markus Miltner, Morgane Farradèche, Valérie Masson-Delmotte, Amaëlle Landais","doi":"10.5194/egusphere-2024-2149","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Water vapour isotopes are important tools to better understand processes governing the atmospheric hydrological cycle. Their measurement in polar regions is crucial to improve the interpretation of water isotopic records in ice cores. <em>In situ</em> water vapour isotopic monitoring is however an important challenge, especially in dry places of the East Antarctic plateau where water mixing ratio can be as low as 10 ppmv. We present in this article new commercial laser spectrometers based on the optical feedback – cavity enhanced absorption spectroscopy (OF-CEAS) technique, adapted for water vapour isotopic measurement in dry regions. We characterize a first instrument adapted for Antarctic coastal monitoring with an optical cavity finesse of 64,000 (ringdown time of 54 µs), installed at Dumont d’Urville station during the summer campaign 2022–2023, and a second instrument with a high finesse of 116,000 (98 µs ringdown), to be deployed inland East Antarctica. The high finesse instrument demonstrates a stability up to two days of acquisition, with a limit of detection down to 10 ppmv humidity for 𝛿D and 100 ppmv for 𝛿<sup>18</sup>O.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"27 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"OF-CEAS laser spectroscopy to measure water isotopes in dry environments: example of application in Antarctica\",\"authors\":\"Thomas Lauwers, Elise Fourré, Olivier Jossoud, Daniele Romanini, Frédéric Prié, Giordano Nitti, Mathieu Casado, Kévin Jaulin, Markus Miltner, Morgane Farradèche, Valérie Masson-Delmotte, Amaëlle Landais\",\"doi\":\"10.5194/egusphere-2024-2149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Abstract.</strong> Water vapour isotopes are important tools to better understand processes governing the atmospheric hydrological cycle. Their measurement in polar regions is crucial to improve the interpretation of water isotopic records in ice cores. <em>In situ</em> water vapour isotopic monitoring is however an important challenge, especially in dry places of the East Antarctic plateau where water mixing ratio can be as low as 10 ppmv. We present in this article new commercial laser spectrometers based on the optical feedback – cavity enhanced absorption spectroscopy (OF-CEAS) technique, adapted for water vapour isotopic measurement in dry regions. We characterize a first instrument adapted for Antarctic coastal monitoring with an optical cavity finesse of 64,000 (ringdown time of 54 µs), installed at Dumont d’Urville station during the summer campaign 2022–2023, and a second instrument with a high finesse of 116,000 (98 µs ringdown), to be deployed inland East Antarctica. The high finesse instrument demonstrates a stability up to two days of acquisition, with a limit of detection down to 10 ppmv humidity for 𝛿D and 100 ppmv for 𝛿<sup>18</sup>O.\",\"PeriodicalId\":8619,\"journal\":{\"name\":\"Atmospheric Measurement Techniques\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Measurement Techniques\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5194/egusphere-2024-2149\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-2149","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

摘要水蒸气同位素是更好地了解大气水文循环过程的重要工具。在极地地区测量水蒸气同位素对于更好地解释冰芯中的水同位素记录至关重要。然而,原位水蒸气同位素监测是一项重要挑战,尤其是在南极东部高原的干旱地区,那里的水混合比可能低至 10 ppmv。本文介绍了基于光反馈-空腔增强吸收光谱(OF-CEAS)技术的新型商用激光光谱仪,适用于干旱地区的水蒸气同位素测量。我们对第一台仪器进行了鉴定,该仪器适用于南极沿岸监测,光腔细度为 64,000(环降时间为 54 µs),于 2022-2023 年夏季活动期间安装在杜蒙德维尔站;第二台仪器的细度高达 116,000(环降时间为 98 µs),将部署在南极洲东部内陆地区。高精细度仪器显示了长达两天的采集稳定性,𝛿D 的检测限低至 10 ppmv 湿度,𝛿18O 的检测限低至 100 ppmv。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
OF-CEAS laser spectroscopy to measure water isotopes in dry environments: example of application in Antarctica
Abstract. Water vapour isotopes are important tools to better understand processes governing the atmospheric hydrological cycle. Their measurement in polar regions is crucial to improve the interpretation of water isotopic records in ice cores. In situ water vapour isotopic monitoring is however an important challenge, especially in dry places of the East Antarctic plateau where water mixing ratio can be as low as 10 ppmv. We present in this article new commercial laser spectrometers based on the optical feedback – cavity enhanced absorption spectroscopy (OF-CEAS) technique, adapted for water vapour isotopic measurement in dry regions. We characterize a first instrument adapted for Antarctic coastal monitoring with an optical cavity finesse of 64,000 (ringdown time of 54 µs), installed at Dumont d’Urville station during the summer campaign 2022–2023, and a second instrument with a high finesse of 116,000 (98 µs ringdown), to be deployed inland East Antarctica. The high finesse instrument demonstrates a stability up to two days of acquisition, with a limit of detection down to 10 ppmv humidity for 𝛿D and 100 ppmv for 𝛿18O.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Atmospheric Measurement Techniques
Atmospheric Measurement Techniques METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
7.10
自引率
18.40%
发文量
331
审稿时长
3 months
期刊介绍: Atmospheric Measurement Techniques (AMT) is an international scientific journal dedicated to the publication and discussion of advances in remote sensing, in-situ and laboratory measurement techniques for the constituents and properties of the Earth’s atmosphere. The main subject areas comprise the development, intercomparison and validation of measurement instruments and techniques of data processing and information retrieval for gases, aerosols, and clouds. The manuscript types considered for peer-reviewed publication are research articles, review articles, and commentaries.
期刊最新文献
Analyzing the chemical composition, morphology and size of ice-nucleating particles by coupling a scanning electron microscope to an offline diffusion chamber Wet-Radome Attenuation in ARM Cloud Radars and Its Utilization in Radar Calibration Using Disdrometer Measurements Chilean Observation Network De MeteOr Radars (CONDOR): Multi-Static System Configuration & Wind Comparison with Co-located Lidar Benchmarking KDP in Rainfall: A Quantitative Assessment of Estimation Algorithms Using C-Band Weather Radar Observations Advances in OH reactivity instruments for airborne field measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1