文本到语音合成的样本高效扩散

Justin Lovelace, Soham Ray, Kwangyoun Kim, Kilian Q. Weinberger, Felix Wu
{"title":"文本到语音合成的样本高效扩散","authors":"Justin Lovelace, Soham Ray, Kwangyoun Kim, Kilian Q. Weinberger, Felix Wu","doi":"arxiv-2409.03717","DOIUrl":null,"url":null,"abstract":"This work introduces Sample-Efficient Speech Diffusion (SESD), an algorithm\nfor effective speech synthesis in modest data regimes through latent diffusion.\nIt is based on a novel diffusion architecture, that we call U-Audio Transformer\n(U-AT), that efficiently scales to long sequences and operates in the latent\nspace of a pre-trained audio autoencoder. Conditioned on character-aware\nlanguage model representations, SESD achieves impressive results despite\ntraining on less than 1k hours of speech - far less than current\nstate-of-the-art systems. In fact, it synthesizes more intelligible speech than\nthe state-of-the-art auto-regressive model, VALL-E, while using less than 2%\nthe training data.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sample-Efficient Diffusion for Text-To-Speech Synthesis\",\"authors\":\"Justin Lovelace, Soham Ray, Kwangyoun Kim, Kilian Q. Weinberger, Felix Wu\",\"doi\":\"arxiv-2409.03717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work introduces Sample-Efficient Speech Diffusion (SESD), an algorithm\\nfor effective speech synthesis in modest data regimes through latent diffusion.\\nIt is based on a novel diffusion architecture, that we call U-Audio Transformer\\n(U-AT), that efficiently scales to long sequences and operates in the latent\\nspace of a pre-trained audio autoencoder. Conditioned on character-aware\\nlanguage model representations, SESD achieves impressive results despite\\ntraining on less than 1k hours of speech - far less than current\\nstate-of-the-art systems. In fact, it synthesizes more intelligible speech than\\nthe state-of-the-art auto-regressive model, VALL-E, while using less than 2%\\nthe training data.\",\"PeriodicalId\":501178,\"journal\":{\"name\":\"arXiv - CS - Sound\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Sound\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作介绍了样本高效语音扩散(SESD),这是一种通过潜在扩散在适度数据环境中进行有效语音合成的算法。它基于一种新颖的扩散架构,我们称之为 U-Audio Transformer(U-AT),它能有效地扩展到长序列,并在预训练音频自动编码器的潜在空间中运行。SESD 以字符感知语言模型表示为条件,在不到 1K 小时的语音训练中取得了令人印象深刻的成果,远远低于目前最先进的系统。事实上,它合成的语音比最先进的自动回归模型 VALL-E 更清晰,而使用的训练数据却不到 2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sample-Efficient Diffusion for Text-To-Speech Synthesis
This work introduces Sample-Efficient Speech Diffusion (SESD), an algorithm for effective speech synthesis in modest data regimes through latent diffusion. It is based on a novel diffusion architecture, that we call U-Audio Transformer (U-AT), that efficiently scales to long sequences and operates in the latent space of a pre-trained audio autoencoder. Conditioned on character-aware language model representations, SESD achieves impressive results despite training on less than 1k hours of speech - far less than current state-of-the-art systems. In fact, it synthesizes more intelligible speech than the state-of-the-art auto-regressive model, VALL-E, while using less than 2% the training data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Deep Learning Embeddings for Speech Emotion Recognition by Predicting Interpretable Acoustic Features ESPnet-EZ: Python-only ESPnet for Easy Fine-tuning and Integration Prevailing Research Areas for Music AI in the Era of Foundation Models Egocentric Speaker Classification in Child-Adult Dyadic Interactions: From Sensing to Computational Modeling The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1