通过对齐和标签匹配加强模态融合,实现多模态情感识别

Qifei Li, Yingming Gao, Yuhua Wen, Cong Wang, Ya Li
{"title":"通过对齐和标签匹配加强模态融合,实现多模态情感识别","authors":"Qifei Li, Yingming Gao, Yuhua Wen, Cong Wang, Ya Li","doi":"arxiv-2408.09438","DOIUrl":null,"url":null,"abstract":"To address the limitation in multimodal emotion recognition (MER) performance\narising from inter-modal information fusion, we propose a novel MER framework\nbased on multitask learning where fusion occurs after alignment, called\nFoal-Net. The framework is designed to enhance the effectiveness of modality\nfusion and includes two auxiliary tasks: audio-video emotion alignment (AVEL)\nand cross-modal emotion label matching (MEM). First, AVEL achieves alignment of\nemotional information in audio-video representations through contrastive\nlearning. Then, a modal fusion network integrates the aligned features.\nMeanwhile, MEM assesses whether the emotions of the current sample pair are the\nsame, providing assistance for modal information fusion and guiding the model\nto focus more on emotional information. The experimental results conducted on\nIEMOCAP corpus show that Foal-Net outperforms the state-of-the-art methods and\nemotion alignment is necessary before modal fusion.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Modal Fusion by Alignment and Label Matching for Multimodal Emotion Recognition\",\"authors\":\"Qifei Li, Yingming Gao, Yuhua Wen, Cong Wang, Ya Li\",\"doi\":\"arxiv-2408.09438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To address the limitation in multimodal emotion recognition (MER) performance\\narising from inter-modal information fusion, we propose a novel MER framework\\nbased on multitask learning where fusion occurs after alignment, called\\nFoal-Net. The framework is designed to enhance the effectiveness of modality\\nfusion and includes two auxiliary tasks: audio-video emotion alignment (AVEL)\\nand cross-modal emotion label matching (MEM). First, AVEL achieves alignment of\\nemotional information in audio-video representations through contrastive\\nlearning. Then, a modal fusion network integrates the aligned features.\\nMeanwhile, MEM assesses whether the emotions of the current sample pair are the\\nsame, providing assistance for modal information fusion and guiding the model\\nto focus more on emotional information. The experimental results conducted on\\nIEMOCAP corpus show that Foal-Net outperforms the state-of-the-art methods and\\nemotion alignment is necessary before modal fusion.\",\"PeriodicalId\":501178,\"journal\":{\"name\":\"arXiv - CS - Sound\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Sound\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.09438\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.09438","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决跨模态信息融合对多模态情感识别(MER)性能造成的限制,我们提出了一种基于多任务学习的新型多模态情感识别框架,即在配准后进行融合,称为Foal-Net。该框架旨在提高模态融合的有效性,包括两个辅助任务:音频视频情感配准(AVEL)和跨模态情感标签匹配(MEM)。首先,AVEL 通过对比学习实现音视频表征中情感信息的对齐。同时,MEM 评估当前样本对的情感是否相同,为模态信息融合提供帮助,并引导模型更加关注情感信息。在 IEMOCAP 语料库上进行的实验结果表明,Foal-Net 的性能优于最先进的方法,而且在模态融合之前必须进行情感对齐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Modal Fusion by Alignment and Label Matching for Multimodal Emotion Recognition
To address the limitation in multimodal emotion recognition (MER) performance arising from inter-modal information fusion, we propose a novel MER framework based on multitask learning where fusion occurs after alignment, called Foal-Net. The framework is designed to enhance the effectiveness of modality fusion and includes two auxiliary tasks: audio-video emotion alignment (AVEL) and cross-modal emotion label matching (MEM). First, AVEL achieves alignment of emotional information in audio-video representations through contrastive learning. Then, a modal fusion network integrates the aligned features. Meanwhile, MEM assesses whether the emotions of the current sample pair are the same, providing assistance for modal information fusion and guiding the model to focus more on emotional information. The experimental results conducted on IEMOCAP corpus show that Foal-Net outperforms the state-of-the-art methods and emotion alignment is necessary before modal fusion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Deep Learning Embeddings for Speech Emotion Recognition by Predicting Interpretable Acoustic Features ESPnet-EZ: Python-only ESPnet for Easy Fine-tuning and Integration Prevailing Research Areas for Music AI in the Era of Foundation Models Egocentric Speaker Classification in Child-Adult Dyadic Interactions: From Sensing to Computational Modeling The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1