{"title":"利用物理学启发神经网络在赫斯顿模型中进行期权定价","authors":"Donatien Hainaut, Alex Casas","doi":"10.1007/s10436-024-00452-7","DOIUrl":null,"url":null,"abstract":"<div><p>In absence of a closed form expression such as in the Heston model, the option pricing is computationally intensive when calibrating a model to market quotes. this article proposes an alternative to standard pricing methods based on physics-inspired neural networks (PINNs). A PINN integrates principles from physics into its learning process to enhance its efficiency in solving complex problems. In this article, the driving principle is the Feynman-Kac (FK) equation, which is a partial differential equation (PDE) governing the derivative price in the Heston model. We focus on the valuation of European options and show that PINNs constitute an efficient alternative for pricing options with various specifications and parameters without the need for retraining.</p></div>","PeriodicalId":45289,"journal":{"name":"Annals of Finance","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Option pricing in the Heston model with physics inspired neural networks\",\"authors\":\"Donatien Hainaut, Alex Casas\",\"doi\":\"10.1007/s10436-024-00452-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In absence of a closed form expression such as in the Heston model, the option pricing is computationally intensive when calibrating a model to market quotes. this article proposes an alternative to standard pricing methods based on physics-inspired neural networks (PINNs). A PINN integrates principles from physics into its learning process to enhance its efficiency in solving complex problems. In this article, the driving principle is the Feynman-Kac (FK) equation, which is a partial differential equation (PDE) governing the derivative price in the Heston model. We focus on the valuation of European options and show that PINNs constitute an efficient alternative for pricing options with various specifications and parameters without the need for retraining.</p></div>\",\"PeriodicalId\":45289,\"journal\":{\"name\":\"Annals of Finance\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10436-024-00452-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Finance","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s10436-024-00452-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Option pricing in the Heston model with physics inspired neural networks
In absence of a closed form expression such as in the Heston model, the option pricing is computationally intensive when calibrating a model to market quotes. this article proposes an alternative to standard pricing methods based on physics-inspired neural networks (PINNs). A PINN integrates principles from physics into its learning process to enhance its efficiency in solving complex problems. In this article, the driving principle is the Feynman-Kac (FK) equation, which is a partial differential equation (PDE) governing the derivative price in the Heston model. We focus on the valuation of European options and show that PINNs constitute an efficient alternative for pricing options with various specifications and parameters without the need for retraining.
期刊介绍:
Annals of Finance provides an outlet for original research in all areas of finance and its applications to other disciplines having a clear and substantive link to the general theme of finance. In particular, innovative research papers of moderate length of the highest quality in all scientific areas that are motivated by the analysis of financial problems will be considered. Annals of Finance''s scope encompasses - but is not limited to - the following areas: accounting and finance, asset pricing, banking and finance, capital markets and finance, computational finance, corporate finance, derivatives, dynamical and chaotic systems in finance, economics and finance, empirical finance, experimental finance, finance and the theory of the firm, financial econometrics, financial institutions, mathematical finance, money and finance, portfolio analysis, regulation, stochastic analysis and finance, stock market analysis, systemic risk and financial stability. Annals of Finance also publishes special issues on any topic in finance and its applications of current interest. A small section, entitled finance notes, will be devoted solely to publishing short articles – up to ten pages in length, of substantial interest in finance. Officially cited as: Ann Finance