设计操作透明度高的机器人系统,用于在超声波扫描过程中量化手臂阻抗

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IEEE Transactions on Human-Machine Systems Pub Date : 2024-09-10 DOI:10.1109/THMS.2024.3442537
Baoshan Niu;Dapeng Yang;Yangjunjian Zhou;Le Zhang;Qi Huang;Yikun Gu
{"title":"设计操作透明度高的机器人系统,用于在超声波扫描过程中量化手臂阻抗","authors":"Baoshan Niu;Dapeng Yang;Yangjunjian Zhou;Le Zhang;Qi Huang;Yikun Gu","doi":"10.1109/THMS.2024.3442537","DOIUrl":null,"url":null,"abstract":"Experienced sonographers can adjust their arm impedance in real-time to obtain high-quality ultrasound (US) images during US scanning. These operational skills can be captured through robot systems with multimodal data collection capabilities (position, force, and impedance). However, low operational transparency between the system (generally, a serial robot with admittance control) and its users will result in significant delays and errors, interfering with the skill acquisition process. The paper proposes a new system that adopts the parallel mechanism (Omega.7) to improve the transparency of the operation. The scanning probe and a 6-axis force sensor are attached to the end of Omega.7. When operating the probe, a zero-force drag effect can be realized through gravity and torque compensations. The arm impedance during the scanning can be measured through the force disturbance method by analyzing external forces on the device. Ultrasonic scans were conducted on phantoms of different hardness, and arm impedance was measured. Statistical analysis reveals that when scanning softer phantoms, arms exhibit higher stiffness. The transparency analysis results show that the equipment designed in this paper has a higher level of transparency than the scheme of serial robot with admittance control. The high operation transparency of the system makes it an ideal skill-acquisition device with broad applications.","PeriodicalId":48916,"journal":{"name":"IEEE Transactions on Human-Machine Systems","volume":"54 6","pages":"798-807"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a Robotic System Featured With High Operation Transparency for Quantifying Arm Impedance During Ultrasound Scanning\",\"authors\":\"Baoshan Niu;Dapeng Yang;Yangjunjian Zhou;Le Zhang;Qi Huang;Yikun Gu\",\"doi\":\"10.1109/THMS.2024.3442537\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experienced sonographers can adjust their arm impedance in real-time to obtain high-quality ultrasound (US) images during US scanning. These operational skills can be captured through robot systems with multimodal data collection capabilities (position, force, and impedance). However, low operational transparency between the system (generally, a serial robot with admittance control) and its users will result in significant delays and errors, interfering with the skill acquisition process. The paper proposes a new system that adopts the parallel mechanism (Omega.7) to improve the transparency of the operation. The scanning probe and a 6-axis force sensor are attached to the end of Omega.7. When operating the probe, a zero-force drag effect can be realized through gravity and torque compensations. The arm impedance during the scanning can be measured through the force disturbance method by analyzing external forces on the device. Ultrasonic scans were conducted on phantoms of different hardness, and arm impedance was measured. Statistical analysis reveals that when scanning softer phantoms, arms exhibit higher stiffness. The transparency analysis results show that the equipment designed in this paper has a higher level of transparency than the scheme of serial robot with admittance control. The high operation transparency of the system makes it an ideal skill-acquisition device with broad applications.\",\"PeriodicalId\":48916,\"journal\":{\"name\":\"IEEE Transactions on Human-Machine Systems\",\"volume\":\"54 6\",\"pages\":\"798-807\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Human-Machine Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10673896/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Human-Machine Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10673896/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

经验丰富的超声技师可以在 US 扫描过程中实时调整手臂阻抗,以获得高质量的超声(US)图像。这些操作技能可以通过具有多模态数据采集功能(位置、力和阻抗)的机器人系统来获取。然而,由于系统(一般是具有导纳控制功能的串行机器人)与用户之间的操作透明度较低,会导致严重的延迟和错误,从而干扰技能获取过程。本文提出了一种采用并联机构(Omega.7)的新系统,以提高操作透明度。Omega.7 的末端连接有扫描探针和六轴力传感器。在操作探针时,可通过重力和扭矩补偿实现零阻力效应。扫描过程中的机械臂阻抗可通过分析设备上的外力,采用力扰动法进行测量。对不同硬度的模型进行了超声扫描,并测量了手臂阻抗。统计分析表明,在扫描较软的模型时,手臂表现出较高的硬度。透明度分析结果表明,本文设计的设备比带导纳控制的串行机器人方案具有更高的透明度。该系统的高操作透明度使其成为理想的技能获取设备,具有广泛的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of a Robotic System Featured With High Operation Transparency for Quantifying Arm Impedance During Ultrasound Scanning
Experienced sonographers can adjust their arm impedance in real-time to obtain high-quality ultrasound (US) images during US scanning. These operational skills can be captured through robot systems with multimodal data collection capabilities (position, force, and impedance). However, low operational transparency between the system (generally, a serial robot with admittance control) and its users will result in significant delays and errors, interfering with the skill acquisition process. The paper proposes a new system that adopts the parallel mechanism (Omega.7) to improve the transparency of the operation. The scanning probe and a 6-axis force sensor are attached to the end of Omega.7. When operating the probe, a zero-force drag effect can be realized through gravity and torque compensations. The arm impedance during the scanning can be measured through the force disturbance method by analyzing external forces on the device. Ultrasonic scans were conducted on phantoms of different hardness, and arm impedance was measured. Statistical analysis reveals that when scanning softer phantoms, arms exhibit higher stiffness. The transparency analysis results show that the equipment designed in this paper has a higher level of transparency than the scheme of serial robot with admittance control. The high operation transparency of the system makes it an ideal skill-acquisition device with broad applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Human-Machine Systems
IEEE Transactions on Human-Machine Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, CYBERNETICS
CiteScore
7.10
自引率
11.10%
发文量
136
期刊介绍: The scope of the IEEE Transactions on Human-Machine Systems includes the fields of human machine systems. It covers human systems and human organizational interactions including cognitive ergonomics, system test and evaluation, and human information processing concerns in systems and organizations.
期刊最新文献
Table of Contents Call for Papers: IEEE Transactions on Human-Machine Systems IEEE Transactions on Human-Machine Systems Information for Authors IEEE Systems, Man, and Cybernetics Society Information IEEE Systems, Man, and Cybernetics Society Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1