分析双黑洞合并的协同效应:轨道偏心率、自旋后退和非四极模式的影响

Divyajyoti
{"title":"分析双黑洞合并的协同效应:轨道偏心率、自旋后退和非四极模式的影响","authors":"Divyajyoti","doi":"arxiv-2409.05167","DOIUrl":null,"url":null,"abstract":"A gravitational wave (GW) signal carries imprints of the properties of its\nsource. The ability to extract source properties crucially depends on our prior\nknowledge of the signal morphology. Even though binary black hole (BBH) mergers\nare the cleanest system to model in general relativity, currently, there are no\nwaveform models which include all physical effects. This thesis focuses on\nthree subdominant effects: orbital eccentricity, spin-precession, and\nnon-quadrupole or higher-order modes (HMs). We study the interplay of these\neffects on data analysis of GW signals, highlighting the shortcomings and\nemphasizing the need for more advanced waveforms. For instance, we investigate\nwhether orbital eccentricity and spin-precession can mimic each other and thus\ncaution the GW community towards the biases that may arise due to the neglect\nof eccentricity and/or spins in the waveform models. Using waveforms with full\nspin-precession and HMs, we extend the existing spin-induced quadrupole moment\n(SIQM) test - a null test to distinguish BBH systems from other black hole\nmimickers - and show that these improved waveforms give significantly better\nbounds. Additionally, we quantify the parameter space where the effect of HMs\nis most significant and show the importance of detecting these modes in GW\nevents for future ground-based GW detectors such as Cosmic Explorer and\nEinstein Telescope.","PeriodicalId":501041,"journal":{"name":"arXiv - PHYS - General Relativity and Quantum Cosmology","volume":"50 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergies in analysing binary black hole mergers: Effect of orbital eccentricity, spin-precession, and non-quadrupole modes\",\"authors\":\"Divyajyoti\",\"doi\":\"arxiv-2409.05167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A gravitational wave (GW) signal carries imprints of the properties of its\\nsource. The ability to extract source properties crucially depends on our prior\\nknowledge of the signal morphology. Even though binary black hole (BBH) mergers\\nare the cleanest system to model in general relativity, currently, there are no\\nwaveform models which include all physical effects. This thesis focuses on\\nthree subdominant effects: orbital eccentricity, spin-precession, and\\nnon-quadrupole or higher-order modes (HMs). We study the interplay of these\\neffects on data analysis of GW signals, highlighting the shortcomings and\\nemphasizing the need for more advanced waveforms. For instance, we investigate\\nwhether orbital eccentricity and spin-precession can mimic each other and thus\\ncaution the GW community towards the biases that may arise due to the neglect\\nof eccentricity and/or spins in the waveform models. Using waveforms with full\\nspin-precession and HMs, we extend the existing spin-induced quadrupole moment\\n(SIQM) test - a null test to distinguish BBH systems from other black hole\\nmimickers - and show that these improved waveforms give significantly better\\nbounds. Additionally, we quantify the parameter space where the effect of HMs\\nis most significant and show the importance of detecting these modes in GW\\nevents for future ground-based GW detectors such as Cosmic Explorer and\\nEinstein Telescope.\",\"PeriodicalId\":501041,\"journal\":{\"name\":\"arXiv - PHYS - General Relativity and Quantum Cosmology\",\"volume\":\"50 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - General Relativity and Quantum Cosmology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - General Relativity and Quantum Cosmology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

引力波(GW)信号带有其源特性的印记。提取信号源属性的能力关键取决于我们对信号形态的预先了解。尽管双黑洞(BBH)合并是广义相对论中最干净的建模系统,但目前还没有包含所有物理效应的形态模型。本论文重点研究三种次主要效应:轨道偏心、自旋后退和非四极或高阶模式(HMs)。我们研究了这些效应对 GW 信号数据分析的相互影响,突出了其中的不足,并强调了对更先进波形的需求。例如,我们研究了轨道偏心和自旋后退是否可以相互模仿,从而提醒全球大气观测界注意由于波形模型中忽略偏心和/或自旋而可能产生的偏差。利用具有全自旋-后退和HMs的波形,我们扩展了现有的自旋诱导四极矩(SIQM)检验--一种用于区分BBH系统和其他黑洞模仿者的无效检验--并表明这些改进的波形给出了明显更好的边界。此外,我们还量化了HM影响最显著的参数空间,并显示了在GW事件中探测这些模式对于未来地面GW探测器(如宇宙探测器和爱因斯坦望远镜)的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergies in analysing binary black hole mergers: Effect of orbital eccentricity, spin-precession, and non-quadrupole modes
A gravitational wave (GW) signal carries imprints of the properties of its source. The ability to extract source properties crucially depends on our prior knowledge of the signal morphology. Even though binary black hole (BBH) mergers are the cleanest system to model in general relativity, currently, there are no waveform models which include all physical effects. This thesis focuses on three subdominant effects: orbital eccentricity, spin-precession, and non-quadrupole or higher-order modes (HMs). We study the interplay of these effects on data analysis of GW signals, highlighting the shortcomings and emphasizing the need for more advanced waveforms. For instance, we investigate whether orbital eccentricity and spin-precession can mimic each other and thus caution the GW community towards the biases that may arise due to the neglect of eccentricity and/or spins in the waveform models. Using waveforms with full spin-precession and HMs, we extend the existing spin-induced quadrupole moment (SIQM) test - a null test to distinguish BBH systems from other black hole mimickers - and show that these improved waveforms give significantly better bounds. Additionally, we quantify the parameter space where the effect of HMs is most significant and show the importance of detecting these modes in GW events for future ground-based GW detectors such as Cosmic Explorer and Einstein Telescope.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Matter Geometry Coupling and Casimir Wormhole Geometry Multi-field TDiff theories for cosmology Field Sources for $f(R,R_{μν})$ Black-Bounce Solutions: The Case of K-Gravity Magnetic Reconnection and Energy Extraction from a Konoplya-Zhidenko rotating non-Kerr black hole Holographic Einstein Rings of AdS Black Holes in Horndeski Theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1