Elmira Moosavi-Khoonsari, Abbas Ahmadi Siahboumi, Sun Yong Kwon, Rodney Jones, Sina Mostaghel
{"title":"钛铁矿冶炼和杂质分布的热力学模型","authors":"Elmira Moosavi-Khoonsari, Abbas Ahmadi Siahboumi, Sun Yong Kwon, Rodney Jones, Sina Mostaghel","doi":"10.1007/s11837-024-06844-4","DOIUrl":null,"url":null,"abstract":"<div><p>Pigment production utilizes TiO<sub>2</sub>-rich slags produced by the ilmenite smelting process which is sensitive to impurity levels in the titania slag. Thermodynamic analyses of ilmenite smelting were conducted to outline a path for process improvement. Specifically, the distribution of Ti and Fe, as well as a wide range of impurities, including V, Cr, Mn, Al, Si, Ca, Mg, P, and S, between the titania slag and molten iron were investigated. A comprehensive literature review was conducted to adequately ascertain the chemical compositions of ilmenite concentrates, which are among the most critical operational parameters in ilmenite smelting. Additionally, the quality requirements regarding impurity contents in the raw materials for TiO<sub>2</sub> pigment production were reviewed. The partition coefficients of elements between slag and metal determined as a function of process variables (i.e., oxygen partial pressure, temperature, and MgO/(Al<sub>2</sub>O<sub>3</sub> + SiO<sub>2</sub>) ratio) has been presented. Moreover, an in-depth analysis of the oxygen potentials during the ilmenite smelting process and the analysis of slag viscosity in corresponding process conditions have been shown. The analysis results are compared to the experimental data reported in the literature.</p></div>","PeriodicalId":605,"journal":{"name":"JOM","volume":"76 11","pages":"6511 - 6533"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic Modeling of Ilmenite Smelting and Impurity Distribution\",\"authors\":\"Elmira Moosavi-Khoonsari, Abbas Ahmadi Siahboumi, Sun Yong Kwon, Rodney Jones, Sina Mostaghel\",\"doi\":\"10.1007/s11837-024-06844-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Pigment production utilizes TiO<sub>2</sub>-rich slags produced by the ilmenite smelting process which is sensitive to impurity levels in the titania slag. Thermodynamic analyses of ilmenite smelting were conducted to outline a path for process improvement. Specifically, the distribution of Ti and Fe, as well as a wide range of impurities, including V, Cr, Mn, Al, Si, Ca, Mg, P, and S, between the titania slag and molten iron were investigated. A comprehensive literature review was conducted to adequately ascertain the chemical compositions of ilmenite concentrates, which are among the most critical operational parameters in ilmenite smelting. Additionally, the quality requirements regarding impurity contents in the raw materials for TiO<sub>2</sub> pigment production were reviewed. The partition coefficients of elements between slag and metal determined as a function of process variables (i.e., oxygen partial pressure, temperature, and MgO/(Al<sub>2</sub>O<sub>3</sub> + SiO<sub>2</sub>) ratio) has been presented. Moreover, an in-depth analysis of the oxygen potentials during the ilmenite smelting process and the analysis of slag viscosity in corresponding process conditions have been shown. The analysis results are compared to the experimental data reported in the literature.</p></div>\",\"PeriodicalId\":605,\"journal\":{\"name\":\"JOM\",\"volume\":\"76 11\",\"pages\":\"6511 - 6533\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOM\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11837-024-06844-4\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOM","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11837-024-06844-4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Thermodynamic Modeling of Ilmenite Smelting and Impurity Distribution
Pigment production utilizes TiO2-rich slags produced by the ilmenite smelting process which is sensitive to impurity levels in the titania slag. Thermodynamic analyses of ilmenite smelting were conducted to outline a path for process improvement. Specifically, the distribution of Ti and Fe, as well as a wide range of impurities, including V, Cr, Mn, Al, Si, Ca, Mg, P, and S, between the titania slag and molten iron were investigated. A comprehensive literature review was conducted to adequately ascertain the chemical compositions of ilmenite concentrates, which are among the most critical operational parameters in ilmenite smelting. Additionally, the quality requirements regarding impurity contents in the raw materials for TiO2 pigment production were reviewed. The partition coefficients of elements between slag and metal determined as a function of process variables (i.e., oxygen partial pressure, temperature, and MgO/(Al2O3 + SiO2) ratio) has been presented. Moreover, an in-depth analysis of the oxygen potentials during the ilmenite smelting process and the analysis of slag viscosity in corresponding process conditions have been shown. The analysis results are compared to the experimental data reported in the literature.
期刊介绍:
JOM is a technical journal devoted to exploring the many aspects of materials science and engineering. JOM reports scholarly work that explores the state-of-the-art processing, fabrication, design, and application of metals, ceramics, plastics, composites, and other materials. In pursuing this goal, JOM strives to balance the interests of the laboratory and the marketplace by reporting academic, industrial, and government-sponsored work from around the world.