Yongyan Zhang, Zebo Zhao, Xiangjie Miao, Jiuhui Wu, Liming Chen, Biao Li, Hui Liu, Leipeng Yang, Qinglong Liu, Tao Chen and Suobin Li
{"title":"轻质球形上层结构内部低频超宽带隙的调节机制","authors":"Yongyan Zhang, Zebo Zhao, Xiangjie Miao, Jiuhui Wu, Liming Chen, Biao Li, Hui Liu, Leipeng Yang, Qinglong Liu, Tao Chen and Suobin Li","doi":"10.1088/1402-4896/ad74a3","DOIUrl":null,"url":null,"abstract":"Conventional resonant structures can be effective in obtaining broadband, but it is still a challenge to design small-sized and lightweight acoustic metamaterials with a low-frequency ultra-wideband. This paper proposes a new approach of designing a lightweight spherical localized resonance superstructure with adjustable stiffness ratio, and the mechanism of adjusting the low-frequency ultra-wide forbidden band is revealed. Then, the correlation between the zero value of its dynamic equivalent mass and the stiffness ratio of the system is studied. It is found that not only is the upper bound of the negative mass effectively broadened, but also the lower bound is successfully lowered only by adjusting the stiffness ratio of the sphere. Most importantly, based on the regulation mechanism with adjustable stiffness ratio, the lower boundary of the band gap is lowered from 171 Hz to 141 Hz, and the upper boundary is increased from 445 Hz to 710 Hz. Therefore, the low-frequency ultra-wideband of 141–710 Hz is obtained only by adjusting the stiffness ratio of the system and the Finite Element Method, which is highly consistent with theoretical analyses. Obviously, the mechanism of obtaining the low-frequency wideband through adjusting the stiffness ratio not only provides a novel idea for adjusting the low-frequency ultra-wideband, but also provides theoretical guidance for the developing the small-size and lightweight acoustic devices, so it would have potential application in the field of vibration and noise reduction.","PeriodicalId":20067,"journal":{"name":"Physica Scripta","volume":"1 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mechanism of adjusting the low-frequency ultra-wide band gap within lightweight spherical superstructue\",\"authors\":\"Yongyan Zhang, Zebo Zhao, Xiangjie Miao, Jiuhui Wu, Liming Chen, Biao Li, Hui Liu, Leipeng Yang, Qinglong Liu, Tao Chen and Suobin Li\",\"doi\":\"10.1088/1402-4896/ad74a3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conventional resonant structures can be effective in obtaining broadband, but it is still a challenge to design small-sized and lightweight acoustic metamaterials with a low-frequency ultra-wideband. This paper proposes a new approach of designing a lightweight spherical localized resonance superstructure with adjustable stiffness ratio, and the mechanism of adjusting the low-frequency ultra-wide forbidden band is revealed. Then, the correlation between the zero value of its dynamic equivalent mass and the stiffness ratio of the system is studied. It is found that not only is the upper bound of the negative mass effectively broadened, but also the lower bound is successfully lowered only by adjusting the stiffness ratio of the sphere. Most importantly, based on the regulation mechanism with adjustable stiffness ratio, the lower boundary of the band gap is lowered from 171 Hz to 141 Hz, and the upper boundary is increased from 445 Hz to 710 Hz. Therefore, the low-frequency ultra-wideband of 141–710 Hz is obtained only by adjusting the stiffness ratio of the system and the Finite Element Method, which is highly consistent with theoretical analyses. Obviously, the mechanism of obtaining the low-frequency wideband through adjusting the stiffness ratio not only provides a novel idea for adjusting the low-frequency ultra-wideband, but also provides theoretical guidance for the developing the small-size and lightweight acoustic devices, so it would have potential application in the field of vibration and noise reduction.\",\"PeriodicalId\":20067,\"journal\":{\"name\":\"Physica Scripta\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Scripta\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1402-4896/ad74a3\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Scripta","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1402-4896/ad74a3","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
The mechanism of adjusting the low-frequency ultra-wide band gap within lightweight spherical superstructue
Conventional resonant structures can be effective in obtaining broadband, but it is still a challenge to design small-sized and lightweight acoustic metamaterials with a low-frequency ultra-wideband. This paper proposes a new approach of designing a lightweight spherical localized resonance superstructure with adjustable stiffness ratio, and the mechanism of adjusting the low-frequency ultra-wide forbidden band is revealed. Then, the correlation between the zero value of its dynamic equivalent mass and the stiffness ratio of the system is studied. It is found that not only is the upper bound of the negative mass effectively broadened, but also the lower bound is successfully lowered only by adjusting the stiffness ratio of the sphere. Most importantly, based on the regulation mechanism with adjustable stiffness ratio, the lower boundary of the band gap is lowered from 171 Hz to 141 Hz, and the upper boundary is increased from 445 Hz to 710 Hz. Therefore, the low-frequency ultra-wideband of 141–710 Hz is obtained only by adjusting the stiffness ratio of the system and the Finite Element Method, which is highly consistent with theoretical analyses. Obviously, the mechanism of obtaining the low-frequency wideband through adjusting the stiffness ratio not only provides a novel idea for adjusting the low-frequency ultra-wideband, but also provides theoretical guidance for the developing the small-size and lightweight acoustic devices, so it would have potential application in the field of vibration and noise reduction.
期刊介绍:
Physica Scripta is an international journal for original research in any branch of experimental and theoretical physics. Articles will be considered in any of the following topics, and interdisciplinary topics involving physics are also welcomed:
-Atomic, molecular and optical physics-
Plasma physics-
Condensed matter physics-
Mathematical physics-
Astrophysics-
High energy physics-
Nuclear physics-
Nonlinear physics.
The journal aims to increase the visibility and accessibility of research to the wider physical sciences community. Articles on topics of broad interest are encouraged and submissions in more specialist fields should endeavour to include reference to the wider context of their research in the introduction.