{"title":"SiCOH 薄膜中的热传输:实验和分子动力学研究","authors":"Hu He","doi":"10.1088/1402-4896/ad76e2","DOIUrl":null,"url":null,"abstract":"Carbon-doped silicon dioxide (SiCOH) film is currently regarded as one of the most promising low-k materials in the integrated circuits (ICs) industry for advanced technology nodes. However, there have been limited studies on the thermal properties of SiCOH compared to its electrical and mechanical properties. In this study, we investigate the thermal conductivity of SiCOH thin films through molecular dynamics simulations (MD) and experimental characterizations. Our findings indicate that the size effect on thermal conductivity at 300 K is negligible when the thickness of SiCOH film is less than 20 nm. Additionally, we observe a contrasting temperature dependence law for the thermal conductivity of SiCOH thin films compared to crystal SiO2 thin films. Furthermore, we demonstrate a significant decrease in thermal conductivity with increasing porosity in SiCOH films; specifically, an increase in porosity from 5.35% to 42.77% results in a 60% reduction in thermal conductivity. Moreover, we validate our simulation results by characterizing the thermal conductivity of SiCOH using 3 method.","PeriodicalId":20067,"journal":{"name":"Physica Scripta","volume":"29 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat transport in SiCOH thin films: an experimental and molecular dynamics study\",\"authors\":\"Hu He\",\"doi\":\"10.1088/1402-4896/ad76e2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon-doped silicon dioxide (SiCOH) film is currently regarded as one of the most promising low-k materials in the integrated circuits (ICs) industry for advanced technology nodes. However, there have been limited studies on the thermal properties of SiCOH compared to its electrical and mechanical properties. In this study, we investigate the thermal conductivity of SiCOH thin films through molecular dynamics simulations (MD) and experimental characterizations. Our findings indicate that the size effect on thermal conductivity at 300 K is negligible when the thickness of SiCOH film is less than 20 nm. Additionally, we observe a contrasting temperature dependence law for the thermal conductivity of SiCOH thin films compared to crystal SiO2 thin films. Furthermore, we demonstrate a significant decrease in thermal conductivity with increasing porosity in SiCOH films; specifically, an increase in porosity from 5.35% to 42.77% results in a 60% reduction in thermal conductivity. Moreover, we validate our simulation results by characterizing the thermal conductivity of SiCOH using 3 method.\",\"PeriodicalId\":20067,\"journal\":{\"name\":\"Physica Scripta\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica Scripta\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1402-4896/ad76e2\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica Scripta","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1402-4896/ad76e2","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Heat transport in SiCOH thin films: an experimental and molecular dynamics study
Carbon-doped silicon dioxide (SiCOH) film is currently regarded as one of the most promising low-k materials in the integrated circuits (ICs) industry for advanced technology nodes. However, there have been limited studies on the thermal properties of SiCOH compared to its electrical and mechanical properties. In this study, we investigate the thermal conductivity of SiCOH thin films through molecular dynamics simulations (MD) and experimental characterizations. Our findings indicate that the size effect on thermal conductivity at 300 K is negligible when the thickness of SiCOH film is less than 20 nm. Additionally, we observe a contrasting temperature dependence law for the thermal conductivity of SiCOH thin films compared to crystal SiO2 thin films. Furthermore, we demonstrate a significant decrease in thermal conductivity with increasing porosity in SiCOH films; specifically, an increase in porosity from 5.35% to 42.77% results in a 60% reduction in thermal conductivity. Moreover, we validate our simulation results by characterizing the thermal conductivity of SiCOH using 3 method.
期刊介绍:
Physica Scripta is an international journal for original research in any branch of experimental and theoretical physics. Articles will be considered in any of the following topics, and interdisciplinary topics involving physics are also welcomed:
-Atomic, molecular and optical physics-
Plasma physics-
Condensed matter physics-
Mathematical physics-
Astrophysics-
High energy physics-
Nuclear physics-
Nonlinear physics.
The journal aims to increase the visibility and accessibility of research to the wider physical sciences community. Articles on topics of broad interest are encouraged and submissions in more specialist fields should endeavour to include reference to the wider context of their research in the introduction.