{"title":"带变阶分数导数的椭圆方程有限差分法","authors":"Siyuan Shi, Zhaopeng Hao, Rui Du","doi":"10.1007/s11075-024-01922-9","DOIUrl":null,"url":null,"abstract":"<p>An efficient finite difference method for the multi-dimensional differential equation with variable-order Riemann-Liouville derivative is studied. Firstly, we construct an efficient discrete approximation for the multi-dimensional variable-order Riemann-Liouville derivative by the generating functions approximation theory. The convergence of the discrete operator in the Barron space is analyzed. Based on it, we present the finite difference method for the elliptic equation with variable-order Riemann-Liouville derivative. The stability and convergence of the method are proven by the maximum principle. Moreover, a fast solver is presented in the computation based on the fast Fourier transform and the multigrid algorithm in order to reduce the storage and speed up the BiCGSTAB method, respectively. We extend this method to time-dependent problems and several numerical examples show that the proposed schemes and the fast solver are efficient.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A finite difference method for elliptic equations with the variable-order fractional derivative\",\"authors\":\"Siyuan Shi, Zhaopeng Hao, Rui Du\",\"doi\":\"10.1007/s11075-024-01922-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An efficient finite difference method for the multi-dimensional differential equation with variable-order Riemann-Liouville derivative is studied. Firstly, we construct an efficient discrete approximation for the multi-dimensional variable-order Riemann-Liouville derivative by the generating functions approximation theory. The convergence of the discrete operator in the Barron space is analyzed. Based on it, we present the finite difference method for the elliptic equation with variable-order Riemann-Liouville derivative. The stability and convergence of the method are proven by the maximum principle. Moreover, a fast solver is presented in the computation based on the fast Fourier transform and the multigrid algorithm in order to reduce the storage and speed up the BiCGSTAB method, respectively. We extend this method to time-dependent problems and several numerical examples show that the proposed schemes and the fast solver are efficient.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01922-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01922-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A finite difference method for elliptic equations with the variable-order fractional derivative
An efficient finite difference method for the multi-dimensional differential equation with variable-order Riemann-Liouville derivative is studied. Firstly, we construct an efficient discrete approximation for the multi-dimensional variable-order Riemann-Liouville derivative by the generating functions approximation theory. The convergence of the discrete operator in the Barron space is analyzed. Based on it, we present the finite difference method for the elliptic equation with variable-order Riemann-Liouville derivative. The stability and convergence of the method are proven by the maximum principle. Moreover, a fast solver is presented in the computation based on the fast Fourier transform and the multigrid algorithm in order to reduce the storage and speed up the BiCGSTAB method, respectively. We extend this method to time-dependent problems and several numerical examples show that the proposed schemes and the fast solver are efficient.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.