{"title":"通过将二次铝渣和红泥渣协同处理用于制砖来利用危险废物","authors":"Chenchen Zhou, Ling Wang, Chengyan Wang","doi":"10.1007/s40831-024-00912-4","DOIUrl":null,"url":null,"abstract":"<p>Secondary aluminum dross (SAD) and red mud residues (RMR) are hazardous wastes generated during the production of alumina and aluminum metal processing, containing unstable AlN, fluoride, chlorides, and alkalis. A novel and pragmatic approach was proposed in this study for the synergistic treatment of waste, wherein hazardous substances are modified through the incorporation of SAD, RMR, and silicate tailings (ST) derived from bauxite flotation, ultimately resulting in the production of ceramic sintered bricks. During brickmaking, AlN in SAD was transformed into Al(OH)<sub>3</sub> through an alkali-catalytic process, and fluorides and chlorides in SAD were efficiently modified and solidified into the silicate mineral marialite Na<sub>4</sub>[AlSi<sub>3</sub>O<sub>8</sub>]<sub>3</sub>(F,Cl). Abundant alkalis in RMR transformed into the stable mineral feldspar Na<sub>1–x</sub>Ca<sub>x</sub>Al<sub>1+x</sub>Si<sub>3–x</sub>O<sub>8</sub>, which is the main phase of the sintered brick. The optimal conditions for achieving superior performance of sintered bricks included a mass ratio of SAD, RMR, and ST at 3:3:4, sintering temperature of 1120 °C, and a sintering duration of 2 h. The water absorption rate, porosity, volume density, and compressive strength of the sintered brick in the optimum conditions were 13.69, 26.75%, and 83.04 MPa, respectively, conforming to the industry standards for brick performance.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":"150 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilization of Hazardous Waste by Co-Treating Secondary Aluminum Dross and Red Mud Residue for Brickmaking\",\"authors\":\"Chenchen Zhou, Ling Wang, Chengyan Wang\",\"doi\":\"10.1007/s40831-024-00912-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Secondary aluminum dross (SAD) and red mud residues (RMR) are hazardous wastes generated during the production of alumina and aluminum metal processing, containing unstable AlN, fluoride, chlorides, and alkalis. A novel and pragmatic approach was proposed in this study for the synergistic treatment of waste, wherein hazardous substances are modified through the incorporation of SAD, RMR, and silicate tailings (ST) derived from bauxite flotation, ultimately resulting in the production of ceramic sintered bricks. During brickmaking, AlN in SAD was transformed into Al(OH)<sub>3</sub> through an alkali-catalytic process, and fluorides and chlorides in SAD were efficiently modified and solidified into the silicate mineral marialite Na<sub>4</sub>[AlSi<sub>3</sub>O<sub>8</sub>]<sub>3</sub>(F,Cl). Abundant alkalis in RMR transformed into the stable mineral feldspar Na<sub>1–x</sub>Ca<sub>x</sub>Al<sub>1+x</sub>Si<sub>3–x</sub>O<sub>8</sub>, which is the main phase of the sintered brick. The optimal conditions for achieving superior performance of sintered bricks included a mass ratio of SAD, RMR, and ST at 3:3:4, sintering temperature of 1120 °C, and a sintering duration of 2 h. The water absorption rate, porosity, volume density, and compressive strength of the sintered brick in the optimum conditions were 13.69, 26.75%, and 83.04 MPa, respectively, conforming to the industry standards for brick performance.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":17160,\"journal\":{\"name\":\"Journal of Sustainable Metallurgy\",\"volume\":\"150 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Metallurgy\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s40831-024-00912-4\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00912-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Utilization of Hazardous Waste by Co-Treating Secondary Aluminum Dross and Red Mud Residue for Brickmaking
Secondary aluminum dross (SAD) and red mud residues (RMR) are hazardous wastes generated during the production of alumina and aluminum metal processing, containing unstable AlN, fluoride, chlorides, and alkalis. A novel and pragmatic approach was proposed in this study for the synergistic treatment of waste, wherein hazardous substances are modified through the incorporation of SAD, RMR, and silicate tailings (ST) derived from bauxite flotation, ultimately resulting in the production of ceramic sintered bricks. During brickmaking, AlN in SAD was transformed into Al(OH)3 through an alkali-catalytic process, and fluorides and chlorides in SAD were efficiently modified and solidified into the silicate mineral marialite Na4[AlSi3O8]3(F,Cl). Abundant alkalis in RMR transformed into the stable mineral feldspar Na1–xCaxAl1+xSi3–xO8, which is the main phase of the sintered brick. The optimal conditions for achieving superior performance of sintered bricks included a mass ratio of SAD, RMR, and ST at 3:3:4, sintering temperature of 1120 °C, and a sintering duration of 2 h. The water absorption rate, porosity, volume density, and compressive strength of the sintered brick in the optimum conditions were 13.69, 26.75%, and 83.04 MPa, respectively, conforming to the industry standards for brick performance.
期刊介绍:
Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.