Maira Naeem, Hafiz Umar Farid, Muhammad Arbaz Madni, Raffaele Albano, Muhammad Azhar Inam, Muhammad Shoaib, Muhammad Shoaib, Tehmena Rashid, Aqsa Dilshad, Akhlaq Ahmad
{"title":"基于地理信息系统的层次分析法确定巴基斯坦旁遮普省的地下水潜力区","authors":"Maira Naeem, Hafiz Umar Farid, Muhammad Arbaz Madni, Raffaele Albano, Muhammad Azhar Inam, Muhammad Shoaib, Muhammad Shoaib, Tehmena Rashid, Aqsa Dilshad, Akhlaq Ahmad","doi":"10.3390/ijgi13090317","DOIUrl":null,"url":null,"abstract":"The quality and level of groundwater tables have rapidly declined because of intensive pumping in Punjab (Pakistan). For sustainable groundwater supplies, there is a need for better management practices. So, the identification of potential groundwater recharge zones is crucial for developing effective management systems. The current research is based on integrating seven contributing factors, including geology, soil map, land cover/land use, lineament density, drainage density, slope, and rainfall to categorize the area into various groundwater recharge potential zones using remote sensing, geographic information system (GIS), and analytical hierarchical process (AHP) for Punjab, Pakistan. The weights (for various thematic layers) and rating values (for sub-classes) in the overlay analysis were assigned for thematic layers and then modified and normalized using the AHP. The result indicates that about 17.88% of the area falls under the category of very high groundwater potential zones (GWPZs). It was found that only 12.27% of the area falls under the category of very low GWPZs. The results showed that spatial technologies like remote sensing and geographic information system (GIS), when combined with AHP technique, provide a robust platform for studying GWPZs. This will help the public and government sectors to understand the potential zone for sustainable groundwater management.","PeriodicalId":48738,"journal":{"name":"ISPRS International Journal of Geo-Information","volume":"2 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GIS-Based Analytical Hierarchy Process for Identifying Groundwater Potential Zones in Punjab, Pakistan\",\"authors\":\"Maira Naeem, Hafiz Umar Farid, Muhammad Arbaz Madni, Raffaele Albano, Muhammad Azhar Inam, Muhammad Shoaib, Muhammad Shoaib, Tehmena Rashid, Aqsa Dilshad, Akhlaq Ahmad\",\"doi\":\"10.3390/ijgi13090317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quality and level of groundwater tables have rapidly declined because of intensive pumping in Punjab (Pakistan). For sustainable groundwater supplies, there is a need for better management practices. So, the identification of potential groundwater recharge zones is crucial for developing effective management systems. The current research is based on integrating seven contributing factors, including geology, soil map, land cover/land use, lineament density, drainage density, slope, and rainfall to categorize the area into various groundwater recharge potential zones using remote sensing, geographic information system (GIS), and analytical hierarchical process (AHP) for Punjab, Pakistan. The weights (for various thematic layers) and rating values (for sub-classes) in the overlay analysis were assigned for thematic layers and then modified and normalized using the AHP. The result indicates that about 17.88% of the area falls under the category of very high groundwater potential zones (GWPZs). It was found that only 12.27% of the area falls under the category of very low GWPZs. The results showed that spatial technologies like remote sensing and geographic information system (GIS), when combined with AHP technique, provide a robust platform for studying GWPZs. This will help the public and government sectors to understand the potential zone for sustainable groundwater management.\",\"PeriodicalId\":48738,\"journal\":{\"name\":\"ISPRS International Journal of Geo-Information\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISPRS International Journal of Geo-Information\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.3390/ijgi13090317\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPRS International Journal of Geo-Information","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/ijgi13090317","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
GIS-Based Analytical Hierarchy Process for Identifying Groundwater Potential Zones in Punjab, Pakistan
The quality and level of groundwater tables have rapidly declined because of intensive pumping in Punjab (Pakistan). For sustainable groundwater supplies, there is a need for better management practices. So, the identification of potential groundwater recharge zones is crucial for developing effective management systems. The current research is based on integrating seven contributing factors, including geology, soil map, land cover/land use, lineament density, drainage density, slope, and rainfall to categorize the area into various groundwater recharge potential zones using remote sensing, geographic information system (GIS), and analytical hierarchical process (AHP) for Punjab, Pakistan. The weights (for various thematic layers) and rating values (for sub-classes) in the overlay analysis were assigned for thematic layers and then modified and normalized using the AHP. The result indicates that about 17.88% of the area falls under the category of very high groundwater potential zones (GWPZs). It was found that only 12.27% of the area falls under the category of very low GWPZs. The results showed that spatial technologies like remote sensing and geographic information system (GIS), when combined with AHP technique, provide a robust platform for studying GWPZs. This will help the public and government sectors to understand the potential zone for sustainable groundwater management.
期刊介绍:
ISPRS International Journal of Geo-Information (ISSN 2220-9964) provides an advanced forum for the science and technology of geographic information. ISPRS International Journal of Geo-Information publishes regular research papers, reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
The 2018 IJGI Outstanding Reviewer Award has been launched! This award acknowledge those who have generously dedicated their time to review manuscripts submitted to IJGI. See full details at http://www.mdpi.com/journal/ijgi/awards.