半圆形红砂岩在单调和循环组合载荷下的声学信号响应特征和差异

IF 3.9 2区 工程技术 Q3 ENERGY & FUELS Geomechanics and Geophysics for Geo-Energy and Geo-Resources Pub Date : 2024-08-28 DOI:10.1007/s40948-024-00838-x
Quanle Zou, Chunmei Chen, Zihan Chen, Kang Peng, Hong Lv, Jinfei Zhan
{"title":"半圆形红砂岩在单调和循环组合载荷下的声学信号响应特征和差异","authors":"Quanle Zou, Chunmei Chen, Zihan Chen, Kang Peng, Hong Lv, Jinfei Zhan","doi":"10.1007/s40948-024-00838-x","DOIUrl":null,"url":null,"abstract":"<p>After underground coal mining, rocks are often subjected to tensile damage by the interaction of dynamic and static loadings. The process of rock fracture development under dynamic and static loadings will be released in the form of acoustic energy to form an acoustic signal. In addition, the acoustic signals in dynamic loading differ from that in static loading. Therefore, this study conducted three-point bending experiments with continuous dynamic loading and dynamic–static coupling loading on semi-circular red sandstone specimens. The acoustic signals during red sandstone specimens’ tensile damage were monitored in real-time. The results show that red sandstone’s tensile strength and deformation are enhanced under dynamic–static coupling loading. The red sandstone has a more effective acoustic emission hit rate, energy rate, and r during tensile damage under continuous dynamic loading. In dynamic loading, macroscopic fractures are developed in red sandstone, which has few acoustic emission events but releases strong acoustic signals. In static loading, the pores inside the red sandstone are compacted, the rock particles are rearranged, and the tiny fractures are closed, and its acoustic emission events are many but low in energy. In addition, the rock particles in the front area of the static loading fracture are tightly cemented, which increases the difficulty of separating the rock particles in the front area of the fracture under dynamic loading. Then weakening the red sandstone fracture development process and suppressing its acoustic signals. The research results provide more insight into the differences in tensile damage processes in red sandstone under the interaction of dynamic and static loadings.</p>","PeriodicalId":12813,"journal":{"name":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","volume":"17 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization and differences of acoustic signals response of semi-circular red sandstone under combined monotonous and cyclic loadings\",\"authors\":\"Quanle Zou, Chunmei Chen, Zihan Chen, Kang Peng, Hong Lv, Jinfei Zhan\",\"doi\":\"10.1007/s40948-024-00838-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>After underground coal mining, rocks are often subjected to tensile damage by the interaction of dynamic and static loadings. The process of rock fracture development under dynamic and static loadings will be released in the form of acoustic energy to form an acoustic signal. In addition, the acoustic signals in dynamic loading differ from that in static loading. Therefore, this study conducted three-point bending experiments with continuous dynamic loading and dynamic–static coupling loading on semi-circular red sandstone specimens. The acoustic signals during red sandstone specimens’ tensile damage were monitored in real-time. The results show that red sandstone’s tensile strength and deformation are enhanced under dynamic–static coupling loading. The red sandstone has a more effective acoustic emission hit rate, energy rate, and r during tensile damage under continuous dynamic loading. In dynamic loading, macroscopic fractures are developed in red sandstone, which has few acoustic emission events but releases strong acoustic signals. In static loading, the pores inside the red sandstone are compacted, the rock particles are rearranged, and the tiny fractures are closed, and its acoustic emission events are many but low in energy. In addition, the rock particles in the front area of the static loading fracture are tightly cemented, which increases the difficulty of separating the rock particles in the front area of the fracture under dynamic loading. Then weakening the red sandstone fracture development process and suppressing its acoustic signals. The research results provide more insight into the differences in tensile damage processes in red sandstone under the interaction of dynamic and static loadings.</p>\",\"PeriodicalId\":12813,\"journal\":{\"name\":\"Geomechanics and Geophysics for Geo-Energy and Geo-Resources\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geomechanics and Geophysics for Geo-Energy and Geo-Resources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40948-024-00838-x\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomechanics and Geophysics for Geo-Energy and Geo-Resources","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40948-024-00838-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

地下煤矿开采后,岩石往往会在动荷载和静荷载的相互作用下受到拉伸破坏。在动载和静载作用下,岩石断裂的发展过程会以声能的形式释放出来,形成声学信号。此外,动荷载下的声学信号与静荷载下的声学信号有所不同。因此,本研究对半圆形红砂岩试样进行了连续动态加载和动静耦合加载的三点弯曲实验。对红砂岩试样拉伸破坏过程中的声学信号进行了实时监测。结果表明,在动静耦合加载下,红砂岩的抗拉强度和变形都得到了增强。在连续动态加载下,红砂岩在拉伸破坏过程中的声发射命中率、能量率和 r 值都更高。在动态加载时,红砂岩中会出现宏观裂缝,其声发射事件较少,但会释放出强烈的声信号。在静态加载时,红砂岩内部的孔隙被压实,岩石颗粒重新排列,微小裂缝被封闭,其声波发射事件多但能量低。此外,静态加载断裂前端区域的岩石颗粒胶结紧密,增加了动态加载下断裂前端区域岩石颗粒分离的难度。进而削弱了红砂岩断裂发育过程,抑制了其声学信号。该研究成果为了解红砂岩在动荷载和静荷载相互作用下拉伸破坏过程的差异提供了更多启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Characterization and differences of acoustic signals response of semi-circular red sandstone under combined monotonous and cyclic loadings

After underground coal mining, rocks are often subjected to tensile damage by the interaction of dynamic and static loadings. The process of rock fracture development under dynamic and static loadings will be released in the form of acoustic energy to form an acoustic signal. In addition, the acoustic signals in dynamic loading differ from that in static loading. Therefore, this study conducted three-point bending experiments with continuous dynamic loading and dynamic–static coupling loading on semi-circular red sandstone specimens. The acoustic signals during red sandstone specimens’ tensile damage were monitored in real-time. The results show that red sandstone’s tensile strength and deformation are enhanced under dynamic–static coupling loading. The red sandstone has a more effective acoustic emission hit rate, energy rate, and r during tensile damage under continuous dynamic loading. In dynamic loading, macroscopic fractures are developed in red sandstone, which has few acoustic emission events but releases strong acoustic signals. In static loading, the pores inside the red sandstone are compacted, the rock particles are rearranged, and the tiny fractures are closed, and its acoustic emission events are many but low in energy. In addition, the rock particles in the front area of the static loading fracture are tightly cemented, which increases the difficulty of separating the rock particles in the front area of the fracture under dynamic loading. Then weakening the red sandstone fracture development process and suppressing its acoustic signals. The research results provide more insight into the differences in tensile damage processes in red sandstone under the interaction of dynamic and static loadings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geomechanics and Geophysics for Geo-Energy and Geo-Resources
Geomechanics and Geophysics for Geo-Energy and Geo-Resources Earth and Planetary Sciences-Geophysics
CiteScore
6.40
自引率
16.00%
发文量
163
期刊介绍: This journal offers original research, new developments, and case studies in geomechanics and geophysics, focused on energy and resources in Earth’s subsurface. Covers theory, experimental results, numerical methods, modeling, engineering, technology and more.
期刊最新文献
Numerical analysis of the influence of quartz crystal anisotropy on the thermal–mechanical coupling behavior of monomineral quartzite Failure analysis of Nehbandan granite under various stress states and strain rates using a calibrated Riedel–Hiermaier–Thoma constitutive model Fracture propagation characteristics of layered shale oil reservoirs with dense laminas under cyclic pressure shock fracturing Numerical simulation of hydraulic fracture propagation from recompletion in refracturing with dynamic stress modeling Criterion for hydraulic fracture propagation behaviour at coal measure composite reservoir interface based on energy release rate theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1