{"title":"倾斜管道中的单个毛细管在气泡运动过程中形成链簇","authors":"A. E. Gorelikova, O. N. Kashinsky, A. V. Chinak","doi":"10.1134/S0021894424010127","DOIUrl":null,"url":null,"abstract":"<p>The sizes and rise velocity of bubbles in a stationary liquid in an inclined channel with a circular cross-section at different gas flow rates through a capillary were determined (3.0–5.5 ml/min). The size and velocity of gas bubbles were studied by shadow photography. It is shown that in the range of channel inclination angles 40–60°, the formation of stable bubble structures—clusters consisting of bubbles of the same size (1.5–1.8 mm) — is possible. In regimes without the formation of chain clusters, the average diameter of gas bubbles increased (2.0–2.2 mm) due to their coalescence.</p>","PeriodicalId":608,"journal":{"name":"Journal of Applied Mechanics and Technical Physics","volume":"65 1","pages":"105 - 111"},"PeriodicalIF":0.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FORMATION OF CHAIN CLUSTERS DURING BUBBLE MOTION FROM A SINGLE CAPILLARY IN AN INCLINED PIPE\",\"authors\":\"A. E. Gorelikova, O. N. Kashinsky, A. V. Chinak\",\"doi\":\"10.1134/S0021894424010127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The sizes and rise velocity of bubbles in a stationary liquid in an inclined channel with a circular cross-section at different gas flow rates through a capillary were determined (3.0–5.5 ml/min). The size and velocity of gas bubbles were studied by shadow photography. It is shown that in the range of channel inclination angles 40–60°, the formation of stable bubble structures—clusters consisting of bubbles of the same size (1.5–1.8 mm) — is possible. In regimes without the formation of chain clusters, the average diameter of gas bubbles increased (2.0–2.2 mm) due to their coalescence.</p>\",\"PeriodicalId\":608,\"journal\":{\"name\":\"Journal of Applied Mechanics and Technical Physics\",\"volume\":\"65 1\",\"pages\":\"105 - 111\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mechanics and Technical Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0021894424010127\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics and Technical Physics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0021894424010127","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
FORMATION OF CHAIN CLUSTERS DURING BUBBLE MOTION FROM A SINGLE CAPILLARY IN AN INCLINED PIPE
The sizes and rise velocity of bubbles in a stationary liquid in an inclined channel with a circular cross-section at different gas flow rates through a capillary were determined (3.0–5.5 ml/min). The size and velocity of gas bubbles were studied by shadow photography. It is shown that in the range of channel inclination angles 40–60°, the formation of stable bubble structures—clusters consisting of bubbles of the same size (1.5–1.8 mm) — is possible. In regimes without the formation of chain clusters, the average diameter of gas bubbles increased (2.0–2.2 mm) due to their coalescence.
期刊介绍:
Journal of Applied Mechanics and Technical Physics is a journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The Journal presents papers on fluid mechanics and applied physics. Each issue contains valuable contributions on hypersonic flows; boundary layer theory; turbulence and hydrodynamic stability; free boundary flows; plasma physics; shock waves; explosives and detonation processes; combustion theory; multiphase flows; heat and mass transfer; composite materials and thermal properties of new materials, plasticity, creep, and failure.