神经外科干预过程中血管畸形环境下血液动力学重组的数学模型

IF 0.5 4区 工程技术 Q4 MECHANICS Journal of Applied Mechanics and Technical Physics Pub Date : 2024-08-21 DOI:10.1134/S0021894424010115
A. A. Cherevko, T. S. Sharifullina, V. A. Panarin
{"title":"神经外科干预过程中血管畸形环境下血液动力学重组的数学模型","authors":"A. A. Cherevko,&nbsp;T. S. Sharifullina,&nbsp;V. A. Panarin","doi":"10.1134/S0021894424010115","DOIUrl":null,"url":null,"abstract":"<p>An approach is proposed to model hemodynamics in an arteriovenous malformation and its vascular environment during neurosurgical embolization. This approach is based on a combination of the filtration flow model for blood and embolic agent in the malformation and the hydraulic approximation for the vessels surrounding the malformation. The model is described mathematically by a system of integrodifferential hyperbolic equations. The parameters and functions included in the model are determined using clinical data from real patients. Based on this model, the problem of optimal control of multistage embolization was formulated and studied numerically in a special class of controls. Optimal embolization regimes were found for which there is good agreement between the calculated and clinical data. The proposed approach can be used to develop preoperative recommendations about the optimal surgical intervention tactics.</p>","PeriodicalId":608,"journal":{"name":"Journal of Applied Mechanics and Technical Physics","volume":"65 1","pages":"92 - 104"},"PeriodicalIF":0.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MATHEMATICAL MODEL OF HEMODYNAMIC RESTRUCTURING IN THE ENVIRONMENT OF A VASCULAR MALFORMATION DURING NEUROSURGICAL INTERVENTION\",\"authors\":\"A. A. Cherevko,&nbsp;T. S. Sharifullina,&nbsp;V. A. Panarin\",\"doi\":\"10.1134/S0021894424010115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An approach is proposed to model hemodynamics in an arteriovenous malformation and its vascular environment during neurosurgical embolization. This approach is based on a combination of the filtration flow model for blood and embolic agent in the malformation and the hydraulic approximation for the vessels surrounding the malformation. The model is described mathematically by a system of integrodifferential hyperbolic equations. The parameters and functions included in the model are determined using clinical data from real patients. Based on this model, the problem of optimal control of multistage embolization was formulated and studied numerically in a special class of controls. Optimal embolization regimes were found for which there is good agreement between the calculated and clinical data. The proposed approach can be used to develop preoperative recommendations about the optimal surgical intervention tactics.</p>\",\"PeriodicalId\":608,\"journal\":{\"name\":\"Journal of Applied Mechanics and Technical Physics\",\"volume\":\"65 1\",\"pages\":\"92 - 104\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Mechanics and Technical Physics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0021894424010115\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Mechanics and Technical Physics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S0021894424010115","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文提出了一种方法,用于模拟神经外科栓塞过程中动静脉畸形及其血管环境的血流动力学。该方法基于畸形中血液和栓塞剂的过滤流模型与畸形周围血管的水力近似模型的结合。该模型由一个积分微分双曲方程系统进行数学描述。模型中的参数和函数是根据真实患者的临床数据确定的。根据该模型,制定了多级栓塞的最佳控制问题,并对一类特殊控制进行了数值研究。结果发现,最佳栓塞方案的计算结果与临床数据非常吻合。所提出的方法可用于制定最佳手术干预策略的术前建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MATHEMATICAL MODEL OF HEMODYNAMIC RESTRUCTURING IN THE ENVIRONMENT OF A VASCULAR MALFORMATION DURING NEUROSURGICAL INTERVENTION

An approach is proposed to model hemodynamics in an arteriovenous malformation and its vascular environment during neurosurgical embolization. This approach is based on a combination of the filtration flow model for blood and embolic agent in the malformation and the hydraulic approximation for the vessels surrounding the malformation. The model is described mathematically by a system of integrodifferential hyperbolic equations. The parameters and functions included in the model are determined using clinical data from real patients. Based on this model, the problem of optimal control of multistage embolization was formulated and studied numerically in a special class of controls. Optimal embolization regimes were found for which there is good agreement between the calculated and clinical data. The proposed approach can be used to develop preoperative recommendations about the optimal surgical intervention tactics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
16.70%
发文量
43
审稿时长
4-8 weeks
期刊介绍: Journal of Applied Mechanics and Technical Physics is a journal published in collaboration with the Siberian Branch of the Russian Academy of Sciences. The Journal presents papers on fluid mechanics and applied physics. Each issue contains valuable contributions on hypersonic flows; boundary layer theory; turbulence and hydrodynamic stability; free boundary flows; plasma physics; shock waves; explosives and detonation processes; combustion theory; multiphase flows; heat and mass transfer; composite materials and thermal properties of new materials, plasticity, creep, and failure.
期刊最新文献
STATE OF ART AND PROSPECTS OF INVESTIGATING THE POSSIBILITY OF TURBULENT BOUNDARY LAYER CONTROL BY AIR BLOWING ON A BODY OF REVOLUTION (REVIEW) REACTIVE HOT PRESSING OF B4C–CrB2 CERAMICS AND ITS MECHANICAL PROPERTIES SOLUTION TO A COUPLED PROBLEM OF THERMOMECHANICAL CONTACT OF FUEL ELEMENTS HYDRODYNAMICS OF NON-MAGNETIC DROPLETS IN MAGNETIC FLUIDS IN MICROFLUIDIC CHIPS UNDER THE INFLUENCE OF INHOMOGENEOUS MAGNETIC FIELDS DESIGN, ADJUSTMENT, AND MODE RESEARCH OF LOW-EMISSION BURNER FOR FUEL COMBUSTION IN A SUPERHEATED STEAM JET
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1