EVENet:利用弥散核磁共振成像进行基于证据的集合学习,以实现不确定性感知的大脑分层

Chenjun Li, Dian Yang, Shun Yao, Shuyue Wang, Ye Wu, Le Zhang, Qiannuo Li, Kang Ik Kevin Cho, Johanna Seitz-Holland, Lipeng Ning, Jon Haitz Legarreta, Yogesh Rathi, Carl-Fredrik Westin, Lauren J. O'Donnell, Nir A. Sochen, Ofer Pasternak, Fan Zhang
{"title":"EVENet:利用弥散核磁共振成像进行基于证据的集合学习,以实现不确定性感知的大脑分层","authors":"Chenjun Li, Dian Yang, Shun Yao, Shuyue Wang, Ye Wu, Le Zhang, Qiannuo Li, Kang Ik Kevin Cho, Johanna Seitz-Holland, Lipeng Ning, Jon Haitz Legarreta, Yogesh Rathi, Carl-Fredrik Westin, Lauren J. O'Donnell, Nir A. Sochen, Ofer Pasternak, Fan Zhang","doi":"arxiv-2409.07020","DOIUrl":null,"url":null,"abstract":"In this study, we developed an Evidence-based Ensemble Neural Network, namely\nEVENet, for anatomical brain parcellation using diffusion MRI. The key\ninnovation of EVENet is the design of an evidential deep learning framework to\nquantify predictive uncertainty at each voxel during a single inference. Using\nEVENet, we obtained accurate parcellation and uncertainty estimates across\ndifferent datasets from healthy and clinical populations and with different\nimaging acquisitions. The overall network includes five parallel subnetworks,\nwhere each is dedicated to learning the FreeSurfer parcellation for a certain\ndiffusion MRI parameter. An evidence-based ensemble methodology is then\nproposed to fuse the individual outputs. We perform experimental evaluations on\nlarge-scale datasets from multiple imaging sources, including high-quality\ndiffusion MRI data from healthy adults and clinically diffusion MRI data from\nparticipants with various brain diseases (schizophrenia, bipolar disorder,\nattention-deficit/hyperactivity disorder, Parkinson's disease, cerebral small\nvessel disease, and neurosurgical patients with brain tumors). Compared to\nseveral state-of-the-art methods, our experimental results demonstrate highly\nimproved parcellation accuracy across the multiple testing datasets despite the\ndifferences in dMRI acquisition protocols and health conditions. Furthermore,\nthanks to the uncertainty estimation, our EVENet approach demonstrates a good\nability to detect abnormal brain regions in patients with lesions, enhancing\nthe interpretability and reliability of the segmentation results.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EVENet: Evidence-based Ensemble Learning for Uncertainty-aware Brain Parcellation Using Diffusion MRI\",\"authors\":\"Chenjun Li, Dian Yang, Shun Yao, Shuyue Wang, Ye Wu, Le Zhang, Qiannuo Li, Kang Ik Kevin Cho, Johanna Seitz-Holland, Lipeng Ning, Jon Haitz Legarreta, Yogesh Rathi, Carl-Fredrik Westin, Lauren J. O'Donnell, Nir A. Sochen, Ofer Pasternak, Fan Zhang\",\"doi\":\"arxiv-2409.07020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we developed an Evidence-based Ensemble Neural Network, namely\\nEVENet, for anatomical brain parcellation using diffusion MRI. The key\\ninnovation of EVENet is the design of an evidential deep learning framework to\\nquantify predictive uncertainty at each voxel during a single inference. Using\\nEVENet, we obtained accurate parcellation and uncertainty estimates across\\ndifferent datasets from healthy and clinical populations and with different\\nimaging acquisitions. The overall network includes five parallel subnetworks,\\nwhere each is dedicated to learning the FreeSurfer parcellation for a certain\\ndiffusion MRI parameter. An evidence-based ensemble methodology is then\\nproposed to fuse the individual outputs. We perform experimental evaluations on\\nlarge-scale datasets from multiple imaging sources, including high-quality\\ndiffusion MRI data from healthy adults and clinically diffusion MRI data from\\nparticipants with various brain diseases (schizophrenia, bipolar disorder,\\nattention-deficit/hyperactivity disorder, Parkinson's disease, cerebral small\\nvessel disease, and neurosurgical patients with brain tumors). Compared to\\nseveral state-of-the-art methods, our experimental results demonstrate highly\\nimproved parcellation accuracy across the multiple testing datasets despite the\\ndifferences in dMRI acquisition protocols and health conditions. Furthermore,\\nthanks to the uncertainty estimation, our EVENet approach demonstrates a good\\nability to detect abnormal brain regions in patients with lesions, enhancing\\nthe interpretability and reliability of the segmentation results.\",\"PeriodicalId\":501289,\"journal\":{\"name\":\"arXiv - EE - Image and Video Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们开发了一种基于证据的集合神经网络(Evidence-based Ensemble Neural Network,即EVENet),用于使用弥散核磁共振成像进行大脑解剖学划分。EVENet的关键创新之处在于设计了一个证据深度学习框架,用于在单次推理过程中量化每个体素的预测不确定性。利用 EVENet,我们在来自健康和临床人群的不同数据集以及不同的成像采集中获得了准确的分割和不确定性估计。整个网络包括五个并行的子网络,每个子网络专门用于学习某个扩散 MRI 参数的 FreeSurfer 解析。然后,我们提出了一种基于证据的集合方法来融合单个输出。我们在来自多个成像源的大规模数据集上进行了实验评估,这些数据集包括来自健康成年人的高质量弥散 MRI 数据和来自患有各种脑部疾病(精神分裂症、双相情感障碍、注意力缺陷/多动症、帕金森病、脑部小血管疾病和患有脑肿瘤的神经外科患者)的临床弥散 MRI 数据。与几种最先进的方法相比,我们的实验结果表明,尽管 dMRI 采集方案和健康状况存在差异,但在多个测试数据集中,我们的解析准确率得到了极大提高。此外,得益于不确定性估计,我们的 EVENet 方法能够很好地检测出病变患者的异常脑区,从而提高了分割结果的可解释性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
EVENet: Evidence-based Ensemble Learning for Uncertainty-aware Brain Parcellation Using Diffusion MRI
In this study, we developed an Evidence-based Ensemble Neural Network, namely EVENet, for anatomical brain parcellation using diffusion MRI. The key innovation of EVENet is the design of an evidential deep learning framework to quantify predictive uncertainty at each voxel during a single inference. Using EVENet, we obtained accurate parcellation and uncertainty estimates across different datasets from healthy and clinical populations and with different imaging acquisitions. The overall network includes five parallel subnetworks, where each is dedicated to learning the FreeSurfer parcellation for a certain diffusion MRI parameter. An evidence-based ensemble methodology is then proposed to fuse the individual outputs. We perform experimental evaluations on large-scale datasets from multiple imaging sources, including high-quality diffusion MRI data from healthy adults and clinically diffusion MRI data from participants with various brain diseases (schizophrenia, bipolar disorder, attention-deficit/hyperactivity disorder, Parkinson's disease, cerebral small vessel disease, and neurosurgical patients with brain tumors). Compared to several state-of-the-art methods, our experimental results demonstrate highly improved parcellation accuracy across the multiple testing datasets despite the differences in dMRI acquisition protocols and health conditions. Furthermore, thanks to the uncertainty estimation, our EVENet approach demonstrates a good ability to detect abnormal brain regions in patients with lesions, enhancing the interpretability and reliability of the segmentation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
multiPI-TransBTS: A Multi-Path Learning Framework for Brain Tumor Image Segmentation Based on Multi-Physical Information Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT Denoising diffusion models for high-resolution microscopy image restoration Tumor aware recurrent inter-patient deformable image registration of computed tomography scans with lung cancer Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation using Rein to Fine-tune Vision Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1