顺序学习:从乳房 X 射线照片预测未来乳腺癌事件发生时间的纵向注意力排列模型

Xin Wang, Tao Tan, Yuan Gao, Eric Marcus, Luyi Han, Antonio Portaluri, Tianyu Zhang, Chunyao Lu, Xinglong Liang, Regina Beets-Tan, Jonas Teuwen, Ritse Mann
{"title":"顺序学习:从乳房 X 射线照片预测未来乳腺癌事件发生时间的纵向注意力排列模型","authors":"Xin Wang, Tao Tan, Yuan Gao, Eric Marcus, Luyi Han, Antonio Portaluri, Tianyu Zhang, Chunyao Lu, Xinglong Liang, Regina Beets-Tan, Jonas Teuwen, Ritse Mann","doi":"arxiv-2409.06887","DOIUrl":null,"url":null,"abstract":"Precision breast cancer (BC) risk assessment is crucial for developing\nindividualized screening and prevention. Despite the promising potential of\nrecent mammogram (MG) based deep learning models in predicting BC risk, they\nmostly overlook the 'time-to-future-event' ordering among patients and exhibit\nlimited explorations into how they track history changes in breast tissue,\nthereby limiting their clinical application. In this work, we propose a novel\nmethod, named OA-BreaCR, to precisely model the ordinal relationship of the\ntime to and between BC events while incorporating longitudinal breast tissue\nchanges in a more explainable manner. We validate our method on public EMBED\nand inhouse datasets, comparing with existing BC risk prediction and time\nprediction methods. Our ordinal learning method OA-BreaCR outperforms existing\nmethods in both BC risk and time-to-future-event prediction tasks.\nAdditionally, ordinal heatmap visualizations show the model's attention over\ntime. Our findings underscore the importance of interpretable and precise risk\nassessment for enhancing BC screening and prevention efforts. The code will be\naccessible to the public.","PeriodicalId":501289,"journal":{"name":"arXiv - EE - Image and Video Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ordinal Learning: Longitudinal Attention Alignment Model for Predicting Time to Future Breast Cancer Events from Mammograms\",\"authors\":\"Xin Wang, Tao Tan, Yuan Gao, Eric Marcus, Luyi Han, Antonio Portaluri, Tianyu Zhang, Chunyao Lu, Xinglong Liang, Regina Beets-Tan, Jonas Teuwen, Ritse Mann\",\"doi\":\"arxiv-2409.06887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precision breast cancer (BC) risk assessment is crucial for developing\\nindividualized screening and prevention. Despite the promising potential of\\nrecent mammogram (MG) based deep learning models in predicting BC risk, they\\nmostly overlook the 'time-to-future-event' ordering among patients and exhibit\\nlimited explorations into how they track history changes in breast tissue,\\nthereby limiting their clinical application. In this work, we propose a novel\\nmethod, named OA-BreaCR, to precisely model the ordinal relationship of the\\ntime to and between BC events while incorporating longitudinal breast tissue\\nchanges in a more explainable manner. We validate our method on public EMBED\\nand inhouse datasets, comparing with existing BC risk prediction and time\\nprediction methods. Our ordinal learning method OA-BreaCR outperforms existing\\nmethods in both BC risk and time-to-future-event prediction tasks.\\nAdditionally, ordinal heatmap visualizations show the model's attention over\\ntime. Our findings underscore the importance of interpretable and precise risk\\nassessment for enhancing BC screening and prevention efforts. The code will be\\naccessible to the public.\",\"PeriodicalId\":501289,\"journal\":{\"name\":\"arXiv - EE - Image and Video Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - EE - Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - EE - Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

精准的乳腺癌(BC)风险评估对于开展个性化筛查和预防至关重要。尽管基于近期乳腺X光检查(MG)的深度学习模型在预测乳腺癌风险方面具有广阔的潜力,但它们几乎忽略了患者之间 "时间到未来事件 "的排序,而且对如何跟踪乳腺组织的历史变化探索有限,从而限制了它们的临床应用。在这项工作中,我们提出了一种名为 "OA-BreaCR "的新方法,以精确地模拟乳腺癌事件发生的时间和时间之间的顺序关系,同时以更易于解释的方式纳入纵向乳腺组织变化。我们在公开的 EMBED 和内部数据集上验证了我们的方法,并与现有的乳腺癌风险预测和时间预测方法进行了比较。我们的序数学习方法OA-BreaCR在乳腺癌风险和未来事件时间预测任务中的表现均优于现有方法。我们的研究结果强调了可解释的精确风险评估对加强BC筛查和预防工作的重要性。代码将对公众开放。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ordinal Learning: Longitudinal Attention Alignment Model for Predicting Time to Future Breast Cancer Events from Mammograms
Precision breast cancer (BC) risk assessment is crucial for developing individualized screening and prevention. Despite the promising potential of recent mammogram (MG) based deep learning models in predicting BC risk, they mostly overlook the 'time-to-future-event' ordering among patients and exhibit limited explorations into how they track history changes in breast tissue, thereby limiting their clinical application. In this work, we propose a novel method, named OA-BreaCR, to precisely model the ordinal relationship of the time to and between BC events while incorporating longitudinal breast tissue changes in a more explainable manner. We validate our method on public EMBED and inhouse datasets, comparing with existing BC risk prediction and time prediction methods. Our ordinal learning method OA-BreaCR outperforms existing methods in both BC risk and time-to-future-event prediction tasks. Additionally, ordinal heatmap visualizations show the model's attention over time. Our findings underscore the importance of interpretable and precise risk assessment for enhancing BC screening and prevention efforts. The code will be accessible to the public.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
multiPI-TransBTS: A Multi-Path Learning Framework for Brain Tumor Image Segmentation Based on Multi-Physical Information Autopet III challenge: Incorporating anatomical knowledge into nnUNet for lesion segmentation in PET/CT Denoising diffusion models for high-resolution microscopy image restoration Tumor aware recurrent inter-patient deformable image registration of computed tomography scans with lung cancer Cross-Organ and Cross-Scanner Adenocarcinoma Segmentation using Rein to Fine-tune Vision Foundation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1