中国乐山 2023 年小规模滑坡:基本特征、运动过程与成因分析

IF 4.2 2区 地球科学 Q2 ENVIRONMENTAL SCIENCES Remote Sensing Pub Date : 2024-09-08 DOI:10.3390/rs16173324
Yulong Cui, Zhichong Qian, Wei Xu, Chong Xu
{"title":"中国乐山 2023 年小规模滑坡:基本特征、运动过程与成因分析","authors":"Yulong Cui, Zhichong Qian, Wei Xu, Chong Xu","doi":"10.3390/rs16173324","DOIUrl":null,"url":null,"abstract":"Sudden mountain landslides can pose substantial threats to human lives and property. On 4 June 2023, a landslide occurred in Jinkouhe District, Leshan City, Sichuan Province, resulting in 19 deaths and 5 injuries. This study, drawing on field investigations, geological data, and historical imagery, elucidates the characteristics and causes of the landslide and conducts a reverse analysis of the landslide movement process using Massflow V2.8 numerical simulation software. The results indicate that rainfall and human engineering activities are key factors that triggered this landslide. Numerical simulation shows that the landslide stopped after 60 s of sliding, with a movement distance of approximately 286 m, a maximum sliding speed of 17 m/s, and a maximum accumulation thickness of 7 m, eventually forming a loose landslide debris accumulation of approximately 5.25 × 103 m3. The findings of this study provide significant reference value for research on landslide movement characteristics and disaster prevention and mitigation in mountainous areas.","PeriodicalId":48993,"journal":{"name":"Remote Sensing","volume":null,"pages":null},"PeriodicalIF":4.2000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Small-Scale Landslide in 2023, Leshan, China: Basic Characteristics, Kinematic Process and Cause Analysis\",\"authors\":\"Yulong Cui, Zhichong Qian, Wei Xu, Chong Xu\",\"doi\":\"10.3390/rs16173324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sudden mountain landslides can pose substantial threats to human lives and property. On 4 June 2023, a landslide occurred in Jinkouhe District, Leshan City, Sichuan Province, resulting in 19 deaths and 5 injuries. This study, drawing on field investigations, geological data, and historical imagery, elucidates the characteristics and causes of the landslide and conducts a reverse analysis of the landslide movement process using Massflow V2.8 numerical simulation software. The results indicate that rainfall and human engineering activities are key factors that triggered this landslide. Numerical simulation shows that the landslide stopped after 60 s of sliding, with a movement distance of approximately 286 m, a maximum sliding speed of 17 m/s, and a maximum accumulation thickness of 7 m, eventually forming a loose landslide debris accumulation of approximately 5.25 × 103 m3. The findings of this study provide significant reference value for research on landslide movement characteristics and disaster prevention and mitigation in mountainous areas.\",\"PeriodicalId\":48993,\"journal\":{\"name\":\"Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/rs16173324\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/rs16173324","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

突发性山体滑坡会对人的生命和财产造成巨大威胁。2023 年 6 月 4 日,四川省乐山市金口河区发生山体滑坡,造成 19 人死亡,5 人受伤。本研究通过实地调查、地质数据和历史影像资料,阐明了滑坡的特征和成因,并利用 Massflow V2.8 数值模拟软件对滑坡运动过程进行了逆向分析。结果表明,降雨和人类工程活动是引发此次滑坡的关键因素。数值模拟结果表明,滑坡在滑动 60 s 后停止,移动距离约为 286 m,最大滑动速度为 17 m/s,最大堆积厚度为 7 m,最终形成松散的滑坡碎屑堆积体约 5.25 × 103 m3。该研究结果为山区滑坡运动特征和防灾减灾研究提供了重要参考价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Small-Scale Landslide in 2023, Leshan, China: Basic Characteristics, Kinematic Process and Cause Analysis
Sudden mountain landslides can pose substantial threats to human lives and property. On 4 June 2023, a landslide occurred in Jinkouhe District, Leshan City, Sichuan Province, resulting in 19 deaths and 5 injuries. This study, drawing on field investigations, geological data, and historical imagery, elucidates the characteristics and causes of the landslide and conducts a reverse analysis of the landslide movement process using Massflow V2.8 numerical simulation software. The results indicate that rainfall and human engineering activities are key factors that triggered this landslide. Numerical simulation shows that the landslide stopped after 60 s of sliding, with a movement distance of approximately 286 m, a maximum sliding speed of 17 m/s, and a maximum accumulation thickness of 7 m, eventually forming a loose landslide debris accumulation of approximately 5.25 × 103 m3. The findings of this study provide significant reference value for research on landslide movement characteristics and disaster prevention and mitigation in mountainous areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Remote Sensing
Remote Sensing REMOTE SENSING-
CiteScore
8.30
自引率
24.00%
发文量
5435
审稿时长
20.66 days
期刊介绍: Remote Sensing (ISSN 2072-4292) publishes regular research papers, reviews, letters and communications covering all aspects of the remote sensing process, from instrument design and signal processing to the retrieval of geophysical parameters and their application in geosciences. Our aim is to encourage scientists to publish experimental, theoretical and computational results in as much detail as possible so that results can be easily reproduced. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.
期刊最新文献
Mapping Field-Level Maize Yields in Ethiopian Smallholder Systems Using Sentinel-2 Imagery Development of a Background Filtering Algorithm to Improve the Accuracy of Determining Underground Cavities Using Multi-Channel Ground-Penetrating Radar and Deep Learning Enhancing Digital Twins with Human Movement Data: A Comparative Study of Lidar-Based Tracking Methods Development of a UAS-Based Multi-Sensor Deep Learning Model for Predicting Napa Cabbage Fresh Weight and Determining Optimal Harvest Time Mini-Satellite Fucheng 1 SAR: Interferometry to Monitor Mining-Induced Subsidence and Comparative Analysis with Sentinel-1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1