生物炭强化蚯蚓堆肥脱水活性污泥的堆肥质量、蚯蚓活动和微生物群落:生物炭粒度的作用

IF 13.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Biochar Pub Date : 2024-08-14 DOI:10.1007/s42773-024-00365-8
Wei Peng, Yue Wang, Guangyu Cui, Qiyong Xu, Hua Zhang, Pinjing He, Fan Lü
{"title":"生物炭强化蚯蚓堆肥脱水活性污泥的堆肥质量、蚯蚓活动和微生物群落:生物炭粒度的作用","authors":"Wei Peng, Yue Wang, Guangyu Cui, Qiyong Xu, Hua Zhang, Pinjing He, Fan Lü","doi":"10.1007/s42773-024-00365-8","DOIUrl":null,"url":null,"abstract":"<p>Vermicomposting utilizes the synergistic effect of earthworms with microorganisms to accelerate the stabilization of organic matter in biowastes. Nevertheless, the exact mechanism behind the maturity of vermicompost and the growth of earthworms exposed to biochar of varying particle sizes remains unclear. This study presents an investigation of the effect of biochar particle size on earthworm (<i>Eisenia fetida</i>) survival, microbial diversity, and the quality of vermicompost products. To address these issues, pelletized dewatered sludge samples from a municipal sewage treatment plant were amended with pine-based biochar with particle sizes of 1–2 mm, 25–75 μm, 200 nm, and 60 nm as the substrate for vermicomposting. This study revealed that the addition of millimeter-scale biochar and micron-scale biochar significantly promoted the degradation of organic matter since the organic matter in the treatment with 1–2 mm biochar at the end of the vermicomposting experiment decreased by 12.6%, which was equivalent to a 1.9-fold increase compared with that of the control. Excessive nanopowdering of nanobiochar significantly affected the survival of earthworms and led to 24.4–33.3% cumulative mortality, while millimeter-scale (mm) biochar and micron-scale (μm) biochar achieved zero mortality. The findings of this study could be used for evaluating the potential impact of nanoscale biochar to earthworms and guiding biochar-augmented vermicomposting.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":8789,"journal":{"name":"Biochar","volume":"2 1","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compost quality, earthworm activities and microbial communities in biochar-augmented vermicomposting of dewatered activated sludge: the role of biochar particle size\",\"authors\":\"Wei Peng, Yue Wang, Guangyu Cui, Qiyong Xu, Hua Zhang, Pinjing He, Fan Lü\",\"doi\":\"10.1007/s42773-024-00365-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Vermicomposting utilizes the synergistic effect of earthworms with microorganisms to accelerate the stabilization of organic matter in biowastes. Nevertheless, the exact mechanism behind the maturity of vermicompost and the growth of earthworms exposed to biochar of varying particle sizes remains unclear. This study presents an investigation of the effect of biochar particle size on earthworm (<i>Eisenia fetida</i>) survival, microbial diversity, and the quality of vermicompost products. To address these issues, pelletized dewatered sludge samples from a municipal sewage treatment plant were amended with pine-based biochar with particle sizes of 1–2 mm, 25–75 μm, 200 nm, and 60 nm as the substrate for vermicomposting. This study revealed that the addition of millimeter-scale biochar and micron-scale biochar significantly promoted the degradation of organic matter since the organic matter in the treatment with 1–2 mm biochar at the end of the vermicomposting experiment decreased by 12.6%, which was equivalent to a 1.9-fold increase compared with that of the control. Excessive nanopowdering of nanobiochar significantly affected the survival of earthworms and led to 24.4–33.3% cumulative mortality, while millimeter-scale (mm) biochar and micron-scale (μm) biochar achieved zero mortality. The findings of this study could be used for evaluating the potential impact of nanoscale biochar to earthworms and guiding biochar-augmented vermicomposting.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\",\"PeriodicalId\":8789,\"journal\":{\"name\":\"Biochar\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochar\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s42773-024-00365-8\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochar","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s42773-024-00365-8","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

蚯蚓堆肥利用蚯蚓与微生物的协同作用,加速生物废物中有机物质的稳定。然而,蚯蚓堆肥的成熟和蚯蚓在不同颗粒大小的生物炭中的生长背后的确切机制仍不清楚。本研究调查了生物炭颗粒大小对蚯蚓(Eisenia fetida)存活、微生物多样性和蛭肥产品质量的影响。为了解决这些问题,我们用粒径为 1-2 毫米、25-75 微米、200 纳米和 60 纳米的松基生物炭作为蚯蚓堆肥的基质,对城市污水处理厂的颗粒状脱水污泥样本进行了改良。这项研究表明,添加毫米级生物炭和微米级生物炭能显著促进有机物的降解,因为在蚯蚓堆肥实验结束时,添加 1-2 毫米生物炭的处理中的有机物比对照组减少了 12.6%,相当于增加了 1.9 倍。纳米生物炭的过度纳米粉化严重影响了蚯蚓的存活率,导致 24.4-33.3% 的累积死亡率,而毫米级(mm)生物炭和微米级(μm)生物炭则实现了零死亡率。这项研究的结果可用于评估纳米级生物炭对蚯蚓的潜在影响,并指导生物炭强化蚯蚓堆肥。 图文摘要
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Compost quality, earthworm activities and microbial communities in biochar-augmented vermicomposting of dewatered activated sludge: the role of biochar particle size

Vermicomposting utilizes the synergistic effect of earthworms with microorganisms to accelerate the stabilization of organic matter in biowastes. Nevertheless, the exact mechanism behind the maturity of vermicompost and the growth of earthworms exposed to biochar of varying particle sizes remains unclear. This study presents an investigation of the effect of biochar particle size on earthworm (Eisenia fetida) survival, microbial diversity, and the quality of vermicompost products. To address these issues, pelletized dewatered sludge samples from a municipal sewage treatment plant were amended with pine-based biochar with particle sizes of 1–2 mm, 25–75 μm, 200 nm, and 60 nm as the substrate for vermicomposting. This study revealed that the addition of millimeter-scale biochar and micron-scale biochar significantly promoted the degradation of organic matter since the organic matter in the treatment with 1–2 mm biochar at the end of the vermicomposting experiment decreased by 12.6%, which was equivalent to a 1.9-fold increase compared with that of the control. Excessive nanopowdering of nanobiochar significantly affected the survival of earthworms and led to 24.4–33.3% cumulative mortality, while millimeter-scale (mm) biochar and micron-scale (μm) biochar achieved zero mortality. The findings of this study could be used for evaluating the potential impact of nanoscale biochar to earthworms and guiding biochar-augmented vermicomposting.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochar
Biochar Multiple-
CiteScore
18.60
自引率
10.20%
发文量
61
期刊介绍: Biochar stands as a distinguished academic journal delving into multidisciplinary subjects such as agronomy, environmental science, and materials science. Its pages showcase innovative articles spanning the preparation and processing of biochar, exploring its diverse applications, including but not limited to bioenergy production, biochar-based materials for environmental use, soil enhancement, climate change mitigation, contaminated-environment remediation, water purification, new analytical techniques, life cycle assessment, and crucially, rural and regional development. Biochar publishes various article types, including reviews, original research, rapid reports, commentaries, and perspectives, with the overarching goal of reporting significant research achievements, critical reviews fostering a deeper mechanistic understanding of the science, and facilitating academic exchange to drive scientific and technological development.
期刊最新文献
Advancing modified biochar for sustainable agriculture: a comprehensive review on characterization, analysis, and soil performance. Analyzing the trends and hotspots of biochar’s applications in agriculture, environment, and energy: a bibliometrics study for 2022 and 2023 Oyster shell facilitates the green production of nitrogen-doped porous biochar from macroalgae: a case study for removing atrazine from water Novel utilization exploration for the dephosphorization waste of Ca–modified biochar: enhanced removal of heavy metal ions from water Plant performance and soil–plant carbon relationship response to different biochar types
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1