{"title":"白藜芦醇对磷酸三糖异构酶的抑制:乳腺癌抗糖酵解的新机制","authors":"G. Tuna, O. Akgün, F. Arı","doi":"10.1134/s0026893324700663","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>Breast cancer cells undergo a process of reprogramming their metabolism for rapid growth and proliferation. One of the most common metabolic changes is aerobic glycolysis (Warburg effect), which leads to increased lactate generation and glucose uptake capacity. Triosephosphate isomerase (TPI) is a key enzyme in glycolysis. The effect of Resveratrol (RES), a natural plant compound with known anti-cancer properties, on the TPI enzyme is unknown. The purpose of this study is to examine how RES relates to TPI in breast cancer. TPI levels were examined by ELISA and western-blotting methods in MCF-7 and MDA-MB-231 cells. The changes in lactate dehydrogenase (LDH) activity, methylglyoxal (MGO) formation, nitric oxide synthase (eNOS and iNOS) levels, and MAPK signaling pathway were investigated by colorimetric assays and western-blotting. It was shown for the first time that RES induced a significant decrease in TPI in a dose-dependent manner, with a concomitant increase in levels of MGO, a toxic intermediate. Furthermore, RES treatment decreased LDH activity, and the expression of MAPK, ERK1/2, and JNK, while increasing the expression of eNOS and iNOS levels. The results sign a potential cytotoxic effect of RES due to increased MGO levels resulting from TPI inhibition. The effect of RES on TPI function and glycolysis may be related to NOS induction and the MAPK pathway. These findings are the first data showing the effect of RES treatment on TPI, suggesting that TPI may be a target for energy metabolism in breast cancer.</p>","PeriodicalId":18734,"journal":{"name":"Molecular Biology","volume":"2 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triosephosphate Isomerase Inhibition by Resveratrol: A New Mechanism of Anti-Glycolysis in Breast Cancer\",\"authors\":\"G. Tuna, O. Akgün, F. Arı\",\"doi\":\"10.1134/s0026893324700663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>Breast cancer cells undergo a process of reprogramming their metabolism for rapid growth and proliferation. One of the most common metabolic changes is aerobic glycolysis (Warburg effect), which leads to increased lactate generation and glucose uptake capacity. Triosephosphate isomerase (TPI) is a key enzyme in glycolysis. The effect of Resveratrol (RES), a natural plant compound with known anti-cancer properties, on the TPI enzyme is unknown. The purpose of this study is to examine how RES relates to TPI in breast cancer. TPI levels were examined by ELISA and western-blotting methods in MCF-7 and MDA-MB-231 cells. The changes in lactate dehydrogenase (LDH) activity, methylglyoxal (MGO) formation, nitric oxide synthase (eNOS and iNOS) levels, and MAPK signaling pathway were investigated by colorimetric assays and western-blotting. It was shown for the first time that RES induced a significant decrease in TPI in a dose-dependent manner, with a concomitant increase in levels of MGO, a toxic intermediate. Furthermore, RES treatment decreased LDH activity, and the expression of MAPK, ERK1/2, and JNK, while increasing the expression of eNOS and iNOS levels. The results sign a potential cytotoxic effect of RES due to increased MGO levels resulting from TPI inhibition. The effect of RES on TPI function and glycolysis may be related to NOS induction and the MAPK pathway. These findings are the first data showing the effect of RES treatment on TPI, suggesting that TPI may be a target for energy metabolism in breast cancer.</p>\",\"PeriodicalId\":18734,\"journal\":{\"name\":\"Molecular Biology\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1134/s0026893324700663\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1134/s0026893324700663","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Triosephosphate Isomerase Inhibition by Resveratrol: A New Mechanism of Anti-Glycolysis in Breast Cancer
Abstract
Breast cancer cells undergo a process of reprogramming their metabolism for rapid growth and proliferation. One of the most common metabolic changes is aerobic glycolysis (Warburg effect), which leads to increased lactate generation and glucose uptake capacity. Triosephosphate isomerase (TPI) is a key enzyme in glycolysis. The effect of Resveratrol (RES), a natural plant compound with known anti-cancer properties, on the TPI enzyme is unknown. The purpose of this study is to examine how RES relates to TPI in breast cancer. TPI levels were examined by ELISA and western-blotting methods in MCF-7 and MDA-MB-231 cells. The changes in lactate dehydrogenase (LDH) activity, methylglyoxal (MGO) formation, nitric oxide synthase (eNOS and iNOS) levels, and MAPK signaling pathway were investigated by colorimetric assays and western-blotting. It was shown for the first time that RES induced a significant decrease in TPI in a dose-dependent manner, with a concomitant increase in levels of MGO, a toxic intermediate. Furthermore, RES treatment decreased LDH activity, and the expression of MAPK, ERK1/2, and JNK, while increasing the expression of eNOS and iNOS levels. The results sign a potential cytotoxic effect of RES due to increased MGO levels resulting from TPI inhibition. The effect of RES on TPI function and glycolysis may be related to NOS induction and the MAPK pathway. These findings are the first data showing the effect of RES treatment on TPI, suggesting that TPI may be a target for energy metabolism in breast cancer.
期刊介绍:
Molecular Biology is an international peer reviewed journal that covers a wide scope of problems in molecular, cell and computational biology including genomics, proteomics, bioinformatics, molecular virology and immunology, molecular development biology, molecular evolution and related areals. Molecular Biology publishes reviews, experimental and theoretical works. Every year, the journal publishes special issues devoted to most rapidly developing branches of physical-chemical biology and to the most outstanding scientists.