Desta M. Ulisso, Rutuja A. Chavan, Seema A. Mane, Pooja K. Bhoj, Sanjay S. Kolekar, Anil Vithal Ghule
{"title":"用于高性能超级电容器的无粘结剂核壳锌钴层状双氢氧化物@镍钴氧化物柔性复合电极","authors":"Desta M. Ulisso, Rutuja A. Chavan, Seema A. Mane, Pooja K. Bhoj, Sanjay S. Kolekar, Anil Vithal Ghule","doi":"10.1021/acs.energyfuels.4c02428","DOIUrl":null,"url":null,"abstract":"Synthesis of composite electrode materials intended for high-performance supercapacitor (SC) applications has attracted the attention of researchers due to their highly porous nature, enhanced electrochemical performance, and longer cycle life than their respective pristine components. With this motivation, in this study, a binder-free core–shell zinc cobalt layered double hydroxide@NiCo<sub>2</sub>O<sub>4</sub> thin film composite electrode on a flexible stainless steel mesh (ZnCo-LDH@NiCo<sub>2</sub>O<sub>4</sub>/FSSM) was synthesized by a two-step facile and simple reflux-condensation-mediated method for SC application. The ZnCo-LDH@NiCo<sub>2</sub>O<sub>4</sub> composite electrode with a NiCo<sub>2</sub>O<sub>4</sub> nanosheet core structure and a ZnCo-LDH nanoflake as a shell layer exhibited a higher specific surface area (122.04 m<sup>2</sup> g<sup>–1</sup>) with enhanced porous nature than the pristine ZnCo-LDH (67.4 m<sup>2</sup> g<sup>–1</sup>) and NiCo<sub>2</sub>O<sub>4</sub> (50.76 m<sup>2</sup> g<sup>–1</sup>) components. The ZnCo-LDH@NiCo<sub>2</sub>O<sub>4</sub>/FSSM delivered a specific capacitance (<i>C</i><sub>sp</sub>) of 2378.0 F g<sup>–1</sup> at a current density (CD) of 6 mA cm<sup>–2</sup> and maintained <i>C</i><sub>sp</sub> retention of 99% after 2000 cycles at a high CD of 40 mA cm<sup>–2</sup>. Moreover, the device (ZnCo-LDH@NiCo<sub>2</sub>O<sub>4</sub>/FSSM//AC/FSSM) assembled by using ZnCo-LDH@NiCo<sub>2</sub>O<sub>4</sub>/FSSM (+ve electrode) and activated carbon (AC/FSSM, −ve electrode) exhibited an energy density of 33.3 Wh kg<sup>–1</sup> at a power density of 1109.5 W kg<sup>–1</sup> and maintained an appreciable <i>C</i><sub>sp</sub> retention of 91.7% after 4000 cycles at a higher CD (25 mA cm<sup>–2</sup>). These findings signify that the ZnCo-LDH@NiCo<sub>2</sub>O<sub>4</sub>/FSSM composite electrode is a promising electrode material and will help open avenues for in further exploration of electrode material synthesis for SC applications.","PeriodicalId":35,"journal":{"name":"Energy & Fuels","volume":null,"pages":null},"PeriodicalIF":5.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Binder-Free Core–Shell Zinc Cobalt Layered Double Hydroxide@NiCo2O4 Flexible Composite Electrodes for High-Performance Supercapacitors\",\"authors\":\"Desta M. Ulisso, Rutuja A. Chavan, Seema A. Mane, Pooja K. Bhoj, Sanjay S. Kolekar, Anil Vithal Ghule\",\"doi\":\"10.1021/acs.energyfuels.4c02428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthesis of composite electrode materials intended for high-performance supercapacitor (SC) applications has attracted the attention of researchers due to their highly porous nature, enhanced electrochemical performance, and longer cycle life than their respective pristine components. With this motivation, in this study, a binder-free core–shell zinc cobalt layered double hydroxide@NiCo<sub>2</sub>O<sub>4</sub> thin film composite electrode on a flexible stainless steel mesh (ZnCo-LDH@NiCo<sub>2</sub>O<sub>4</sub>/FSSM) was synthesized by a two-step facile and simple reflux-condensation-mediated method for SC application. The ZnCo-LDH@NiCo<sub>2</sub>O<sub>4</sub> composite electrode with a NiCo<sub>2</sub>O<sub>4</sub> nanosheet core structure and a ZnCo-LDH nanoflake as a shell layer exhibited a higher specific surface area (122.04 m<sup>2</sup> g<sup>–1</sup>) with enhanced porous nature than the pristine ZnCo-LDH (67.4 m<sup>2</sup> g<sup>–1</sup>) and NiCo<sub>2</sub>O<sub>4</sub> (50.76 m<sup>2</sup> g<sup>–1</sup>) components. The ZnCo-LDH@NiCo<sub>2</sub>O<sub>4</sub>/FSSM delivered a specific capacitance (<i>C</i><sub>sp</sub>) of 2378.0 F g<sup>–1</sup> at a current density (CD) of 6 mA cm<sup>–2</sup> and maintained <i>C</i><sub>sp</sub> retention of 99% after 2000 cycles at a high CD of 40 mA cm<sup>–2</sup>. Moreover, the device (ZnCo-LDH@NiCo<sub>2</sub>O<sub>4</sub>/FSSM//AC/FSSM) assembled by using ZnCo-LDH@NiCo<sub>2</sub>O<sub>4</sub>/FSSM (+ve electrode) and activated carbon (AC/FSSM, −ve electrode) exhibited an energy density of 33.3 Wh kg<sup>–1</sup> at a power density of 1109.5 W kg<sup>–1</sup> and maintained an appreciable <i>C</i><sub>sp</sub> retention of 91.7% after 4000 cycles at a higher CD (25 mA cm<sup>–2</sup>). These findings signify that the ZnCo-LDH@NiCo<sub>2</sub>O<sub>4</sub>/FSSM composite electrode is a promising electrode material and will help open avenues for in further exploration of electrode material synthesis for SC applications.\",\"PeriodicalId\":35,\"journal\":{\"name\":\"Energy & Fuels\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Fuels\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.energyfuels.4c02428\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Fuels","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.energyfuels.4c02428","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
摘要
高性能超级电容器(SC)用复合电极材料具有高多孔性、电化学性能更强、循环寿命比原始材料更长等优点,因此其合成受到了研究人员的关注。基于这一动机,本研究采用两步简单易行的回流缩合介导法,在柔性不锈钢网上合成了一种无粘结剂的核壳锌钴层状双氢氧化物@镍钴氧化物薄膜复合电极(ZnCo-LDH@NiCo2O4/FSSM),并将其应用于超级电容器。与原始的 ZnCo-LDH(67.4 m2 g-1)和 NiCo2O4(50.76 m2 g-1)相比,以 NiCo2O4 纳米片为核心结构、ZnCo-LDH 纳米片为壳层的 ZnCo-LDH@NiCo2O4复合电极具有更高的比表面积(122.04 m2 g-1)和更强的多孔性。ZnCo-LDH@NiCo2O4/FSSM 在电流密度(CD)为 6 mA cm-2 时的比电容(Csp)为 2378.0 F g-1,在 40 mA cm-2 的高 CD 下循环 2000 次后,比电容保持率仍为 99%。此外,使用 ZnCo-LDH@NiCo2O4/FSSM(+ve 电极)和活性炭(AC/FSSM,-ve 电极)组装的装置(ZnCo-LDH@NiCo2O4/FSSM)在功率密度为 1109.5 W kg-1 时的能量密度为 33.3 Wh kg-1,在较高的 CD(25 mA cm-2)下循环 4000 次后,Csp 保持率达到 91.7%。这些研究结果表明,ZnCo-LDH@NiCo2O4/FSSM 复合电极是一种很有前景的电极材料,有助于为进一步探索适用于太阳能电池应用的电极材料合成开辟道路。
Synthesis of composite electrode materials intended for high-performance supercapacitor (SC) applications has attracted the attention of researchers due to their highly porous nature, enhanced electrochemical performance, and longer cycle life than their respective pristine components. With this motivation, in this study, a binder-free core–shell zinc cobalt layered double hydroxide@NiCo2O4 thin film composite electrode on a flexible stainless steel mesh (ZnCo-LDH@NiCo2O4/FSSM) was synthesized by a two-step facile and simple reflux-condensation-mediated method for SC application. The ZnCo-LDH@NiCo2O4 composite electrode with a NiCo2O4 nanosheet core structure and a ZnCo-LDH nanoflake as a shell layer exhibited a higher specific surface area (122.04 m2 g–1) with enhanced porous nature than the pristine ZnCo-LDH (67.4 m2 g–1) and NiCo2O4 (50.76 m2 g–1) components. The ZnCo-LDH@NiCo2O4/FSSM delivered a specific capacitance (Csp) of 2378.0 F g–1 at a current density (CD) of 6 mA cm–2 and maintained Csp retention of 99% after 2000 cycles at a high CD of 40 mA cm–2. Moreover, the device (ZnCo-LDH@NiCo2O4/FSSM//AC/FSSM) assembled by using ZnCo-LDH@NiCo2O4/FSSM (+ve electrode) and activated carbon (AC/FSSM, −ve electrode) exhibited an energy density of 33.3 Wh kg–1 at a power density of 1109.5 W kg–1 and maintained an appreciable Csp retention of 91.7% after 4000 cycles at a higher CD (25 mA cm–2). These findings signify that the ZnCo-LDH@NiCo2O4/FSSM composite electrode is a promising electrode material and will help open avenues for in further exploration of electrode material synthesis for SC applications.
期刊介绍:
Energy & Fuels publishes reports of research in the technical area defined by the intersection of the disciplines of chemistry and chemical engineering and the application domain of non-nuclear energy and fuels. This includes research directed at the formation of, exploration for, and production of fossil fuels and biomass; the properties and structure or molecular composition of both raw fuels and refined products; the chemistry involved in the processing and utilization of fuels; fuel cells and their applications; and the analytical and instrumental techniques used in investigations of the foregoing areas.