非局部动力学方程的汉密尔顿-雅可比方法

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED Nonlinearity Pub Date : 2024-09-12 DOI:10.1088/1361-6544/ad75dd
Nadia Loy and Benoît Perthame
{"title":"非局部动力学方程的汉密尔顿-雅可比方法","authors":"Nadia Loy and Benoît Perthame","doi":"10.1088/1361-6544/ad75dd","DOIUrl":null,"url":null,"abstract":"Highly concentrated patterns have been observed in a spatially heterogeneous, nonlocal, kinetic model with BGK type operators implementing a velocity-jump process for cell migration, directed by the nonlocal sensing of either an external signal or the cell population density itself. We describe, in an asymptotic regime, the precise profile of these concentrations which, at the macroscale, are Dirac masses. Because Dirac concentrations look like Gaussian potentials, we use the Hopf–Cole transform to calculate the potential adapted to the problem. This potential, as in other similar situations, is obtained through the viscosity solutions of a Hamilton–Jacobi equation. We begin with the linear case, when the heterogeneous external signal is given, and we show that the concentration profile obtained after the diffusion approximation is not correct and is a simple eikonal approximation of the true H–J equation. Its heterogeneous nature leads us to develop a new analysis of the implicit equation defining the Hamiltonian and a new condition to circumvent the ‘dimensionality problem’. In the nonlinear case, when the signal occurs from the cell density itself, it is shown that the already observed linear instability (pattern formation) occurs when the Hamiltonian is convex-concave, a striking new feature of our approach.","PeriodicalId":54715,"journal":{"name":"Nonlinearity","volume":"7 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hamilton–Jacobi approach to nonlocal kinetic equations\",\"authors\":\"Nadia Loy and Benoît Perthame\",\"doi\":\"10.1088/1361-6544/ad75dd\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Highly concentrated patterns have been observed in a spatially heterogeneous, nonlocal, kinetic model with BGK type operators implementing a velocity-jump process for cell migration, directed by the nonlocal sensing of either an external signal or the cell population density itself. We describe, in an asymptotic regime, the precise profile of these concentrations which, at the macroscale, are Dirac masses. Because Dirac concentrations look like Gaussian potentials, we use the Hopf–Cole transform to calculate the potential adapted to the problem. This potential, as in other similar situations, is obtained through the viscosity solutions of a Hamilton–Jacobi equation. We begin with the linear case, when the heterogeneous external signal is given, and we show that the concentration profile obtained after the diffusion approximation is not correct and is a simple eikonal approximation of the true H–J equation. Its heterogeneous nature leads us to develop a new analysis of the implicit equation defining the Hamiltonian and a new condition to circumvent the ‘dimensionality problem’. In the nonlinear case, when the signal occurs from the cell density itself, it is shown that the already observed linear instability (pattern formation) occurs when the Hamiltonian is convex-concave, a striking new feature of our approach.\",\"PeriodicalId\":54715,\"journal\":{\"name\":\"Nonlinearity\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinearity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6544/ad75dd\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinearity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6544/ad75dd","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在一个空间异质性非局部动力学模型中观察到了高度集中的模式,该模型中的 BGK 型算子实现了细胞迁移的速度跳跃过程,该过程由外部信号或细胞群密度本身的非局部感应所引导。我们在渐进机制中描述了这些浓度的精确轮廓,在宏观尺度上,这些浓度是狄拉克质量。由于狄拉克质点看起来像高斯电势,我们使用霍普夫-科尔变换来计算与问题相适应的电势。与其他类似情况一样,我们通过汉密尔顿-雅可比方程的粘度解来获得该势垒。我们从给定异质外部信号的线性情况开始,并证明扩散近似后得到的浓度曲线是不正确的,它只是真正的 H-J 方程的简单 eikonal 近似值。其异质性质促使我们对定义哈密顿的隐式方程进行了新的分析,并提出了规避 "维度问题 "的新条件。在非线性情况下,当信号来自细胞密度本身时,研究表明,当哈密顿是凸-凹的时候,已经观察到的线性不稳定性(模式形成)就会发生,这是我们方法的一个显著新特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hamilton–Jacobi approach to nonlocal kinetic equations
Highly concentrated patterns have been observed in a spatially heterogeneous, nonlocal, kinetic model with BGK type operators implementing a velocity-jump process for cell migration, directed by the nonlocal sensing of either an external signal or the cell population density itself. We describe, in an asymptotic regime, the precise profile of these concentrations which, at the macroscale, are Dirac masses. Because Dirac concentrations look like Gaussian potentials, we use the Hopf–Cole transform to calculate the potential adapted to the problem. This potential, as in other similar situations, is obtained through the viscosity solutions of a Hamilton–Jacobi equation. We begin with the linear case, when the heterogeneous external signal is given, and we show that the concentration profile obtained after the diffusion approximation is not correct and is a simple eikonal approximation of the true H–J equation. Its heterogeneous nature leads us to develop a new analysis of the implicit equation defining the Hamiltonian and a new condition to circumvent the ‘dimensionality problem’. In the nonlinear case, when the signal occurs from the cell density itself, it is shown that the already observed linear instability (pattern formation) occurs when the Hamiltonian is convex-concave, a striking new feature of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nonlinearity
Nonlinearity 物理-物理:数学物理
CiteScore
3.00
自引率
5.90%
发文量
170
审稿时长
12 months
期刊介绍: Aimed primarily at mathematicians and physicists interested in research on nonlinear phenomena, the journal''s coverage ranges from proofs of important theorems to papers presenting ideas, conjectures and numerical or physical experiments of significant physical and mathematical interest. Subject coverage: The journal publishes papers on nonlinear mathematics, mathematical physics, experimental physics, theoretical physics and other areas in the sciences where nonlinear phenomena are of fundamental importance. A more detailed indication is given by the subject interests of the Editorial Board members, which are listed in every issue of the journal. Due to the broad scope of Nonlinearity, and in order to make all papers published in the journal accessible to its wide readership, authors are required to provide sufficient introductory material in their paper. This material should contain enough detail and background information to place their research into context and to make it understandable to scientists working on nonlinear phenomena. Nonlinearity is a journal of the Institute of Physics and the London Mathematical Society.
期刊最新文献
Dulac maps of real saddle-nodes Lower discrete Hausdorff dimension of spectra for Moran measure Minimal amenable subshift with full mean topological dimension Tracking complex singularities of fluids on log-lattices Example of simplest bifurcation diagram for a monotone family of vector fields on a torus *
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1