用于反中子重建的视觉热量计:基线

Hongtian Yu, Yangu Li, Mingrui Wu, Letian Shen, Yue Liu, Yunxuan Song, Qixiang Ye, Xiaorui Lyu, Yajun Mao, Yangheng Zheng, Yunfan Liu
{"title":"用于反中子重建的视觉热量计:基线","authors":"Hongtian Yu, Yangu Li, Mingrui Wu, Letian Shen, Yue Liu, Yunxuan Song, Qixiang Ye, Xiaorui Lyu, Yajun Mao, Yangheng Zheng, Yunfan Liu","doi":"arxiv-2408.10599","DOIUrl":null,"url":null,"abstract":"In high-energy physics, anti-neutrons ($\\bar{n}$) are fundamental particles\nthat frequently appear as final-state particles, and the reconstruction of\ntheir kinematic properties provides an important probe for understanding the\ngoverning principles. However, this confronts significant challenges\ninstrumentally with the electromagnetic calorimeter (EMC), a typical\nexperimental sensor but recovering the information of incident $\\bar{n}$\ninsufficiently. In this study, we introduce Vision Calorimeter (ViC), a\nbaseline method for anti-neutron reconstruction that leverages deep learning\ndetectors to analyze the implicit relationships between EMC responses and\nincident $\\bar{n}$ characteristics. Our motivation lies in that energy\ndistributions of $\\bar{n}$ samples deposited in the EMC cell arrays embody rich\ncontextual information. Converted to 2-D images, such contextual energy\ndistributions can be used to predict the status of $\\bar{n}$ ($i.e.$, incident\nposition and momentum) through a deep learning detector along with pseudo\nbounding boxes and a specified training objective. Experimental results\ndemonstrate that ViC substantially outperforms the conventional reconstruction\napproach, reducing the prediction error of incident position by 42.81% (from\n17.31$^{\\circ}$ to 9.90$^{\\circ}$). More importantly, this study for the first\ntime realizes the measurement of incident $\\bar{n}$ momentum, underscoring the\npotential of deep learning detectors for particle reconstruction. Code is\navailable at https://github.com/yuhongtian17/ViC.","PeriodicalId":501181,"journal":{"name":"arXiv - PHYS - High Energy Physics - Experiment","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vision Calorimeter for Anti-neutron Reconstruction: A Baseline\",\"authors\":\"Hongtian Yu, Yangu Li, Mingrui Wu, Letian Shen, Yue Liu, Yunxuan Song, Qixiang Ye, Xiaorui Lyu, Yajun Mao, Yangheng Zheng, Yunfan Liu\",\"doi\":\"arxiv-2408.10599\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In high-energy physics, anti-neutrons ($\\\\bar{n}$) are fundamental particles\\nthat frequently appear as final-state particles, and the reconstruction of\\ntheir kinematic properties provides an important probe for understanding the\\ngoverning principles. However, this confronts significant challenges\\ninstrumentally with the electromagnetic calorimeter (EMC), a typical\\nexperimental sensor but recovering the information of incident $\\\\bar{n}$\\ninsufficiently. In this study, we introduce Vision Calorimeter (ViC), a\\nbaseline method for anti-neutron reconstruction that leverages deep learning\\ndetectors to analyze the implicit relationships between EMC responses and\\nincident $\\\\bar{n}$ characteristics. Our motivation lies in that energy\\ndistributions of $\\\\bar{n}$ samples deposited in the EMC cell arrays embody rich\\ncontextual information. Converted to 2-D images, such contextual energy\\ndistributions can be used to predict the status of $\\\\bar{n}$ ($i.e.$, incident\\nposition and momentum) through a deep learning detector along with pseudo\\nbounding boxes and a specified training objective. Experimental results\\ndemonstrate that ViC substantially outperforms the conventional reconstruction\\napproach, reducing the prediction error of incident position by 42.81% (from\\n17.31$^{\\\\circ}$ to 9.90$^{\\\\circ}$). More importantly, this study for the first\\ntime realizes the measurement of incident $\\\\bar{n}$ momentum, underscoring the\\npotential of deep learning detectors for particle reconstruction. Code is\\navailable at https://github.com/yuhongtian17/ViC.\",\"PeriodicalId\":501181,\"journal\":{\"name\":\"arXiv - PHYS - High Energy Physics - Experiment\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - High Energy Physics - Experiment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.10599\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Experiment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10599","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在高能物理中,反中子($\bar{n}$)是经常作为终态粒子出现的基本粒子,重建它们的运动学特性为理解其支配原理提供了一个重要的探针。然而,电磁量热仪(EMC)作为一种典型的实验传感器,却无法充分恢复入射$\bar{n}$的信息,这在仪器上面临着巨大的挑战。在这项研究中,我们引入了Vision Calorimeter(ViC),这是一种反中子重构的基准方法,它利用深度学习检测器来分析电磁量热计响应与入射$\bar{n}$特征之间的隐含关系。我们的动机在于,沉积在 EMC 单元阵列中的 $\bar{n}$ 样品的能量分布包含了丰富的上下文信息。转换成二维图像后,这种上下文能量分布可以通过深度学习检测器、伪包围盒和指定的训练目标来预测$\bar{n}$的状态(即$\bar{n}$的事件位置和动量)。实验结果表明,ViC大大优于传统的重构方法,入射位置的预测误差降低了42.81%(从17.31$^{\circ}$降至9.90$^{\circ}$)。更重要的是,这项研究首次实现了对入射$\bar{n}$动量的测量,凸显了深度学习探测器在粒子重构方面的潜力。代码见 https://github.com/yuhongtian17/ViC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vision Calorimeter for Anti-neutron Reconstruction: A Baseline
In high-energy physics, anti-neutrons ($\bar{n}$) are fundamental particles that frequently appear as final-state particles, and the reconstruction of their kinematic properties provides an important probe for understanding the governing principles. However, this confronts significant challenges instrumentally with the electromagnetic calorimeter (EMC), a typical experimental sensor but recovering the information of incident $\bar{n}$ insufficiently. In this study, we introduce Vision Calorimeter (ViC), a baseline method for anti-neutron reconstruction that leverages deep learning detectors to analyze the implicit relationships between EMC responses and incident $\bar{n}$ characteristics. Our motivation lies in that energy distributions of $\bar{n}$ samples deposited in the EMC cell arrays embody rich contextual information. Converted to 2-D images, such contextual energy distributions can be used to predict the status of $\bar{n}$ ($i.e.$, incident position and momentum) through a deep learning detector along with pseudo bounding boxes and a specified training objective. Experimental results demonstrate that ViC substantially outperforms the conventional reconstruction approach, reducing the prediction error of incident position by 42.81% (from 17.31$^{\circ}$ to 9.90$^{\circ}$). More importantly, this study for the first time realizes the measurement of incident $\bar{n}$ momentum, underscoring the potential of deep learning detectors for particle reconstruction. Code is available at https://github.com/yuhongtian17/ViC.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
First search for axion dark matter with a Madmax prototype Measurement of top-quark pair production in association with charm quarks in proton-proton collisions at $\sqrt{s}=13$ TeV with the ATLAS detector Measurements of polarization and spin correlation and observation of entanglement in top quark pairs using lepton+jets events from proton-proton collisions at $\sqrt{s}$ = 13 TeV Search for light long-lived particles decaying to displaced jets in proton-proton collisions at $\sqrt{s}$ = 13.6 TeV Gamma/hadron discrimination through the analysis of the shower footprint at low energies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1