CipherDM:扩散模型采样的安全三方推论

Xin Zhao, Xiaojun Chen, Xudong Chen, He Li, Tingyu Fan, Zhendong Zhao
{"title":"CipherDM:扩散模型采样的安全三方推论","authors":"Xin Zhao, Xiaojun Chen, Xudong Chen, He Li, Tingyu Fan, Zhendong Zhao","doi":"arxiv-2409.05414","DOIUrl":null,"url":null,"abstract":"Diffusion Models (DMs) achieve state-of-the-art synthesis results in image\ngeneration and have been applied to various fields. However, DMs sometimes\nseriously violate user privacy during usage, making the protection of privacy\nan urgent issue. Using traditional privacy computing schemes like Secure\nMulti-Party Computation (MPC) directly in DMs faces significant computation and\ncommunication challenges. To address these issues, we propose CipherDM, the\nfirst novel, versatile and universal framework applying MPC technology to DMs\nfor secure sampling, which can be widely implemented on multiple DM based\ntasks. We thoroughly analyze sampling latency breakdown, find time-consuming\nparts and design corresponding secure MPC protocols for computing nonlinear\nactivations including SoftMax, SiLU and Mish. CipherDM is evaluated on popular\narchitectures (DDPM, DDIM) using MNIST dataset and on SD deployed by diffusers.\nCompared to direct implementation on SPU, our approach improves running time by\napproximately 1.084\\times \\sim 2.328\\times, and reduces communication costs by\napproximately 1.212\\times \\sim 1.791\\times.","PeriodicalId":501332,"journal":{"name":"arXiv - CS - Cryptography and Security","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CipherDM: Secure Three-Party Inference for Diffusion Model Sampling\",\"authors\":\"Xin Zhao, Xiaojun Chen, Xudong Chen, He Li, Tingyu Fan, Zhendong Zhao\",\"doi\":\"arxiv-2409.05414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diffusion Models (DMs) achieve state-of-the-art synthesis results in image\\ngeneration and have been applied to various fields. However, DMs sometimes\\nseriously violate user privacy during usage, making the protection of privacy\\nan urgent issue. Using traditional privacy computing schemes like Secure\\nMulti-Party Computation (MPC) directly in DMs faces significant computation and\\ncommunication challenges. To address these issues, we propose CipherDM, the\\nfirst novel, versatile and universal framework applying MPC technology to DMs\\nfor secure sampling, which can be widely implemented on multiple DM based\\ntasks. We thoroughly analyze sampling latency breakdown, find time-consuming\\nparts and design corresponding secure MPC protocols for computing nonlinear\\nactivations including SoftMax, SiLU and Mish. CipherDM is evaluated on popular\\narchitectures (DDPM, DDIM) using MNIST dataset and on SD deployed by diffusers.\\nCompared to direct implementation on SPU, our approach improves running time by\\napproximately 1.084\\\\times \\\\sim 2.328\\\\times, and reduces communication costs by\\napproximately 1.212\\\\times \\\\sim 1.791\\\\times.\",\"PeriodicalId\":501332,\"journal\":{\"name\":\"arXiv - CS - Cryptography and Security\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Cryptography and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Cryptography and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

扩散模型(Diffusion Models,DMs)在图像生成方面达到了最先进的合成效果,并已被应用于各个领域。然而,DM 有时会在使用过程中严重侵犯用户隐私,因此隐私保护成为一个亟待解决的问题。在 DM 中直接使用安全多方计算(MPC)等传统隐私计算方案面临着巨大的计算和通信挑战。为了解决这些问题,我们提出了 CipherDM,这是第一个将多方计算技术应用于 DMs 以实现安全采样的新颖、通用和普遍的框架,可以在多个基于 DM 的任务中广泛实施。我们深入分析了采样延迟分解,找到了耗时部分,并设计了相应的安全 MPC 协议,用于计算包括 SoftMax、SiLU 和 Mish 在内的非线性活动。与直接在SPU上实现相比,我们的方法将运行时间缩短了约1.084倍(sim 2.328倍),并将通信成本降低了约1.212倍(sim 1.791倍)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CipherDM: Secure Three-Party Inference for Diffusion Model Sampling
Diffusion Models (DMs) achieve state-of-the-art synthesis results in image generation and have been applied to various fields. However, DMs sometimes seriously violate user privacy during usage, making the protection of privacy an urgent issue. Using traditional privacy computing schemes like Secure Multi-Party Computation (MPC) directly in DMs faces significant computation and communication challenges. To address these issues, we propose CipherDM, the first novel, versatile and universal framework applying MPC technology to DMs for secure sampling, which can be widely implemented on multiple DM based tasks. We thoroughly analyze sampling latency breakdown, find time-consuming parts and design corresponding secure MPC protocols for computing nonlinear activations including SoftMax, SiLU and Mish. CipherDM is evaluated on popular architectures (DDPM, DDIM) using MNIST dataset and on SD deployed by diffusers. Compared to direct implementation on SPU, our approach improves running time by approximately 1.084\times \sim 2.328\times, and reduces communication costs by approximately 1.212\times \sim 1.791\times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PAD-FT: A Lightweight Defense for Backdoor Attacks via Data Purification and Fine-Tuning Artemis: Efficient Commit-and-Prove SNARKs for zkML A Survey-Based Quantitative Analysis of Stress Factors and Their Impacts Among Cybersecurity Professionals Log2graphs: An Unsupervised Framework for Log Anomaly Detection with Efficient Feature Extraction Practical Investigation on the Distinguishability of Longa's Atomic Patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1