通过随机逼近实现正向强化的广义时变波利亚乌恩

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY Journal of Theoretical Probability Pub Date : 2024-09-04 DOI:10.1007/s10959-024-01366-w
Wioletta M. Ruszel, Debleena Thacker
{"title":"通过随机逼近实现正向强化的广义时变波利亚乌恩","authors":"Wioletta M. Ruszel, Debleena Thacker","doi":"10.1007/s10959-024-01366-w","DOIUrl":null,"url":null,"abstract":"<p>Consider a generalized time-dependent Pólya urn process defined as follows. Let <span>\\(d\\in \\mathbb {N}\\)</span> be the number of urns/colors. At each time <i>n</i>, we distribute <span>\\(\\sigma _n\\)</span> balls randomly to the <i>d</i> urns, proportionally to <i>f</i>, where <i>f</i> is a valid reinforcement function. We consider a general class of positive reinforcement functions <span>\\(\\mathcal {R}\\)</span> assuming some monotonicity and growth condition. The class <span>\\(\\mathcal {R}\\)</span> includes convex functions and the classical case <span>\\(f(x)=x^{\\alpha }\\)</span>, <span>\\(\\alpha &gt;1\\)</span>. The novelty of the paper lies in extending stochastic approximation techniques to the <i>d</i>-dimensional case and proving that eventually the process will fixate at some random urn and the other urns will not receive any balls anymore.\n</p>","PeriodicalId":54760,"journal":{"name":"Journal of Theoretical Probability","volume":"8 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Positive Reinforced Generalized Time-Dependent Pólya Urns via Stochastic Approximation\",\"authors\":\"Wioletta M. Ruszel, Debleena Thacker\",\"doi\":\"10.1007/s10959-024-01366-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consider a generalized time-dependent Pólya urn process defined as follows. Let <span>\\\\(d\\\\in \\\\mathbb {N}\\\\)</span> be the number of urns/colors. At each time <i>n</i>, we distribute <span>\\\\(\\\\sigma _n\\\\)</span> balls randomly to the <i>d</i> urns, proportionally to <i>f</i>, where <i>f</i> is a valid reinforcement function. We consider a general class of positive reinforcement functions <span>\\\\(\\\\mathcal {R}\\\\)</span> assuming some monotonicity and growth condition. The class <span>\\\\(\\\\mathcal {R}\\\\)</span> includes convex functions and the classical case <span>\\\\(f(x)=x^{\\\\alpha }\\\\)</span>, <span>\\\\(\\\\alpha &gt;1\\\\)</span>. The novelty of the paper lies in extending stochastic approximation techniques to the <i>d</i>-dimensional case and proving that eventually the process will fixate at some random urn and the other urns will not receive any balls anymore.\\n</p>\",\"PeriodicalId\":54760,\"journal\":{\"name\":\"Journal of Theoretical Probability\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Theoretical Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10959-024-01366-w\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10959-024-01366-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个广义的随时间变化的波利亚瓮过程,其定义如下。让 \(d\in \mathbb {N}\) 是瓮/颜色的数量。在每个时间 n,我们将 \(\sigma _n\) 个球按 f 的比例随机分配到 d 个瓮中,其中 f 是一个有效的强化函数。我们考虑了正强化函数的一般类别(假设有一些单调性和增长条件)。该类函数包括凸函数和经典的 \(f(x)=x^{\alpha }\), \(\alpha >1\).本文的新颖之处在于将随机逼近技术扩展到了 d 维情况,并证明了最终过程将固定在某个随机瓮上,而其他瓮将不再接收任何球。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Positive Reinforced Generalized Time-Dependent Pólya Urns via Stochastic Approximation

Consider a generalized time-dependent Pólya urn process defined as follows. Let \(d\in \mathbb {N}\) be the number of urns/colors. At each time n, we distribute \(\sigma _n\) balls randomly to the d urns, proportionally to f, where f is a valid reinforcement function. We consider a general class of positive reinforcement functions \(\mathcal {R}\) assuming some monotonicity and growth condition. The class \(\mathcal {R}\) includes convex functions and the classical case \(f(x)=x^{\alpha }\), \(\alpha >1\). The novelty of the paper lies in extending stochastic approximation techniques to the d-dimensional case and proving that eventually the process will fixate at some random urn and the other urns will not receive any balls anymore.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Theoretical Probability
Journal of Theoretical Probability 数学-统计学与概率论
CiteScore
1.50
自引率
12.50%
发文量
65
审稿时长
6-12 weeks
期刊介绍: Journal of Theoretical Probability publishes high-quality, original papers in all areas of probability theory, including probability on semigroups, groups, vector spaces, other abstract structures, and random matrices. This multidisciplinary quarterly provides mathematicians and researchers in physics, engineering, statistics, financial mathematics, and computer science with a peer-reviewed forum for the exchange of vital ideas in the field of theoretical probability.
期刊最新文献
Positive Reinforced Generalized Time-Dependent Pólya Urns via Stochastic Approximation Invariant Measures for Stochastic Reaction–Diffusion Problems on Unbounded Thin Domains Driven by Nonlinear Noise Urns with Multiple Drawings and Graph-Based Interaction Stability, Uniqueness and Existence of Solutions to McKean–Vlasov Stochastic Differential Equations in Arbitrary Moments Penalization of Galton–Watson Trees with Marked Vertices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1