通过联合交易语言模型和图表示学习检测以太坊欺诈

Yifan Jia, Yanbin Wang, Jianguo Sun, Yiwei Liu, Zhang Sheng, Ye Tian
{"title":"通过联合交易语言模型和图表示学习检测以太坊欺诈","authors":"Yifan Jia, Yanbin Wang, Jianguo Sun, Yiwei Liu, Zhang Sheng, Ye Tian","doi":"arxiv-2409.07494","DOIUrl":null,"url":null,"abstract":"Ethereum faces growing fraud threats. Current fraud detection methods,\nwhether employing graph neural networks or sequence models, fail to consider\nthe semantic information and similarity patterns within transactions. Moreover,\nthese approaches do not leverage the potential synergistic benefits of\ncombining both types of models. To address these challenges, we propose\nTLMG4Eth that combines a transaction language model with graph-based methods to\ncapture semantic, similarity, and structural features of transaction data in\nEthereum. We first propose a transaction language model that converts numerical\ntransaction data into meaningful transaction sentences, enabling the model to\nlearn explicit transaction semantics. Then, we propose a transaction attribute\nsimilarity graph to learn transaction similarity information, enabling us to\ncapture intuitive insights into transaction anomalies. Additionally, we\nconstruct an account interaction graph to capture the structural information of\nthe account transaction network. We employ a deep multi-head attention network\nto fuse transaction semantic and similarity embeddings, and ultimately propose\na joint training approach for the multi-head attention network and the account\ninteraction graph to obtain the synergistic benefits of both.","PeriodicalId":501332,"journal":{"name":"arXiv - CS - Cryptography and Security","volume":"166 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ethereum Fraud Detection via Joint Transaction Language Model and Graph Representation Learning\",\"authors\":\"Yifan Jia, Yanbin Wang, Jianguo Sun, Yiwei Liu, Zhang Sheng, Ye Tian\",\"doi\":\"arxiv-2409.07494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ethereum faces growing fraud threats. Current fraud detection methods,\\nwhether employing graph neural networks or sequence models, fail to consider\\nthe semantic information and similarity patterns within transactions. Moreover,\\nthese approaches do not leverage the potential synergistic benefits of\\ncombining both types of models. To address these challenges, we propose\\nTLMG4Eth that combines a transaction language model with graph-based methods to\\ncapture semantic, similarity, and structural features of transaction data in\\nEthereum. We first propose a transaction language model that converts numerical\\ntransaction data into meaningful transaction sentences, enabling the model to\\nlearn explicit transaction semantics. Then, we propose a transaction attribute\\nsimilarity graph to learn transaction similarity information, enabling us to\\ncapture intuitive insights into transaction anomalies. Additionally, we\\nconstruct an account interaction graph to capture the structural information of\\nthe account transaction network. We employ a deep multi-head attention network\\nto fuse transaction semantic and similarity embeddings, and ultimately propose\\na joint training approach for the multi-head attention network and the account\\ninteraction graph to obtain the synergistic benefits of both.\",\"PeriodicalId\":501332,\"journal\":{\"name\":\"arXiv - CS - Cryptography and Security\",\"volume\":\"166 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Cryptography and Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Cryptography and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

以太坊面临着日益严重的欺诈威胁。目前的欺诈检测方法,无论是采用图神经网络还是序列模型,都没有考虑到交易中的语义信息和相似性模式。此外,这些方法也没有充分利用结合两种模型的潜在协同优势。为了应对这些挑战,我们提出了将交易语言模型与基于图的方法相结合的交易语言模型4Eth,以捕捉以太坊中交易数据的语义、相似性和结构特征。我们首先提出了一种交易语言模型,它能将数字交易数据转换为有意义的交易句子,从而使该模型能够学习明确的交易语义。然后,我们提出交易属性相似性图来学习交易相似性信息,使我们能够捕捉到交易异常的直观洞察力。此外,我们还构建了账户交互图,以捕捉账户交易网络的结构信息。我们采用深度多头注意力网络来融合交易语义和相似性嵌入,并最终提出了多头注意力网络和账户交互图的联合训练方法,以获得两者的协同优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ethereum Fraud Detection via Joint Transaction Language Model and Graph Representation Learning
Ethereum faces growing fraud threats. Current fraud detection methods, whether employing graph neural networks or sequence models, fail to consider the semantic information and similarity patterns within transactions. Moreover, these approaches do not leverage the potential synergistic benefits of combining both types of models. To address these challenges, we propose TLMG4Eth that combines a transaction language model with graph-based methods to capture semantic, similarity, and structural features of transaction data in Ethereum. We first propose a transaction language model that converts numerical transaction data into meaningful transaction sentences, enabling the model to learn explicit transaction semantics. Then, we propose a transaction attribute similarity graph to learn transaction similarity information, enabling us to capture intuitive insights into transaction anomalies. Additionally, we construct an account interaction graph to capture the structural information of the account transaction network. We employ a deep multi-head attention network to fuse transaction semantic and similarity embeddings, and ultimately propose a joint training approach for the multi-head attention network and the account interaction graph to obtain the synergistic benefits of both.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PAD-FT: A Lightweight Defense for Backdoor Attacks via Data Purification and Fine-Tuning Artemis: Efficient Commit-and-Prove SNARKs for zkML A Survey-Based Quantitative Analysis of Stress Factors and Their Impacts Among Cybersecurity Professionals Log2graphs: An Unsupervised Framework for Log Anomaly Detection with Efficient Feature Extraction Practical Investigation on the Distinguishability of Longa's Atomic Patterns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1