{"title":"影响RGG肽与DNA G-四联体液-液相分离的因素","authors":"Daisuke Miyoshi, Sumit Shil, Mitsuki Tsuruta, Keiko Kawauchi","doi":"10.1002/cmdc.202400460","DOIUrl":null,"url":null,"abstract":"Liquid‐liquid phase separation (LLPS), mediated by G‐quadruplexes (G4s) and intrinsically disordered proteins, particularly those containing RGG domains, plays a critical role in cellular processes and diseases. However, the molecular mechanism and the role of individual amino acid residues of the protein in LLPS with G4 (G4‐LLPS) are still unknown. Here, we systematically designed peptides and investigated the roles of arginine residues in G4‐LLPS. It was found that the FMRP‐derived RGG peptide induced LLPS with G4‐forming Myc‐DNA, whereas a point‐mutated peptide, in which all arginine residues were replaced with lysine, was unable to undergo LLPS, indicating the importance of arginine residues. Moreover, systematically truncated peptides showed that at least five positive net charges of peptide are required to induce G4‐LLPS. Furthermore, quantitative investigation demonstrated that the higher binding affinity of peptides with G4 led to a higher LLPS ability, whereas threshold of the binding affinity for undergoing LLPS was identified. These insights elucidate the pivotal role of arginine in G4‐LLPS and the specific requirement for multiple arginine residues, contributing to a deeper understanding of the complex interplay between intrinsically disordered proteins and nucleic acids.","PeriodicalId":147,"journal":{"name":"ChemMedChem","volume":"24 1","pages":"e202400460"},"PeriodicalIF":3.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Factors Affecting Liquid‐Liquid Phase Separation of RGG Peptides with DNA G‐Quadruplex\",\"authors\":\"Daisuke Miyoshi, Sumit Shil, Mitsuki Tsuruta, Keiko Kawauchi\",\"doi\":\"10.1002/cmdc.202400460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Liquid‐liquid phase separation (LLPS), mediated by G‐quadruplexes (G4s) and intrinsically disordered proteins, particularly those containing RGG domains, plays a critical role in cellular processes and diseases. However, the molecular mechanism and the role of individual amino acid residues of the protein in LLPS with G4 (G4‐LLPS) are still unknown. Here, we systematically designed peptides and investigated the roles of arginine residues in G4‐LLPS. It was found that the FMRP‐derived RGG peptide induced LLPS with G4‐forming Myc‐DNA, whereas a point‐mutated peptide, in which all arginine residues were replaced with lysine, was unable to undergo LLPS, indicating the importance of arginine residues. Moreover, systematically truncated peptides showed that at least five positive net charges of peptide are required to induce G4‐LLPS. Furthermore, quantitative investigation demonstrated that the higher binding affinity of peptides with G4 led to a higher LLPS ability, whereas threshold of the binding affinity for undergoing LLPS was identified. These insights elucidate the pivotal role of arginine in G4‐LLPS and the specific requirement for multiple arginine residues, contributing to a deeper understanding of the complex interplay between intrinsically disordered proteins and nucleic acids.\",\"PeriodicalId\":147,\"journal\":{\"name\":\"ChemMedChem\",\"volume\":\"24 1\",\"pages\":\"e202400460\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemMedChem\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/cmdc.202400460\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemMedChem","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/cmdc.202400460","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Factors Affecting Liquid‐Liquid Phase Separation of RGG Peptides with DNA G‐Quadruplex
Liquid‐liquid phase separation (LLPS), mediated by G‐quadruplexes (G4s) and intrinsically disordered proteins, particularly those containing RGG domains, plays a critical role in cellular processes and diseases. However, the molecular mechanism and the role of individual amino acid residues of the protein in LLPS with G4 (G4‐LLPS) are still unknown. Here, we systematically designed peptides and investigated the roles of arginine residues in G4‐LLPS. It was found that the FMRP‐derived RGG peptide induced LLPS with G4‐forming Myc‐DNA, whereas a point‐mutated peptide, in which all arginine residues were replaced with lysine, was unable to undergo LLPS, indicating the importance of arginine residues. Moreover, systematically truncated peptides showed that at least five positive net charges of peptide are required to induce G4‐LLPS. Furthermore, quantitative investigation demonstrated that the higher binding affinity of peptides with G4 led to a higher LLPS ability, whereas threshold of the binding affinity for undergoing LLPS was identified. These insights elucidate the pivotal role of arginine in G4‐LLPS and the specific requirement for multiple arginine residues, contributing to a deeper understanding of the complex interplay between intrinsically disordered proteins and nucleic acids.
期刊介绍:
Quality research. Outstanding publications. With an impact factor of 3.124 (2019), ChemMedChem is a top journal for research at the interface of chemistry, biology and medicine. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
ChemMedChem publishes primary as well as critical secondary and tertiary information from authors across and for the world. Its mission is to integrate the wide and flourishing field of medicinal and pharmaceutical sciences, ranging from drug design and discovery to drug development and delivery, from molecular modeling to combinatorial chemistry, from target validation to lead generation and ADMET studies. ChemMedChem typically covers topics on small molecules, therapeutic macromolecules, peptides, peptidomimetics, and aptamers, protein-drug conjugates, nucleic acid therapies, and beginning 2017, nanomedicine, particularly 1) targeted nanodelivery, 2) theranostic nanoparticles, and 3) nanodrugs.
Contents
ChemMedChem publishes an attractive mixture of:
Full Papers and Communications
Reviews and Minireviews
Patent Reviews
Highlights and Concepts
Book and Multimedia Reviews.