Davide Caredio, Maruša Koderman, Karl J. Frontzek, Silvia Sorce, Mario Nuvolone, Juliane Bremer, Giovanni Mariutti, Petra Schwarz, Lidia Madrigal, Marija Mitrovic, Stefano Sellitto, Nathalie Streichenberger, Claudia Scheckel, Adriano Aguzzi
{"title":"朊病毒疾病会破坏骨骼肌中谷氨酸/谷氨酰胺的新陈代谢","authors":"Davide Caredio, Maruša Koderman, Karl J. Frontzek, Silvia Sorce, Mario Nuvolone, Juliane Bremer, Giovanni Mariutti, Petra Schwarz, Lidia Madrigal, Marija Mitrovic, Stefano Sellitto, Nathalie Streichenberger, Claudia Scheckel, Adriano Aguzzi","doi":"10.1371/journal.ppat.1012552","DOIUrl":null,"url":null,"abstract":"In prion diseases (PrDs), aggregates of misfolded prion protein (PrP<jats:sup>Sc</jats:sup>) accumulate not only in the brain but also in extraneural organs. This raises the question whether prion-specific pathologies arise also extraneurally. Here we sequenced mRNA transcripts in skeletal muscle, spleen and blood of prion-inoculated mice at eight timepoints during disease progression. We detected gene-expression changes in all three organs, with skeletal muscle showing the most consistent alterations. The glutamate-ammonia ligase (<jats:italic>GLUL</jats:italic>) gene exhibited uniform upregulation in skeletal muscles of mice infected with three distinct scrapie prion strains (RML, ME7, and 22L) and in victims of human sporadic Creutzfeldt-Jakob disease. <jats:italic>GLUL</jats:italic> dysregulation was accompanied by changes in glutamate/glutamine metabolism, leading to reduced glutamate levels in skeletal muscle. None of these changes were observed in skeletal muscle of humans with amyotrophic lateral sclerosis, Alzheimer’s disease, or dementia with Lewy bodies, suggesting that they are specific to prion diseases. These findings reveal an unexpected metabolic dimension of prion infections and point to a potential role for GLUL dysregulation in the glutamate/glutamine metabolism in prion-affected skeletal muscle.","PeriodicalId":20178,"journal":{"name":"PLoS Pathogens","volume":"105 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prion diseases disrupt glutamate/glutamine metabolism in skeletal muscle\",\"authors\":\"Davide Caredio, Maruša Koderman, Karl J. Frontzek, Silvia Sorce, Mario Nuvolone, Juliane Bremer, Giovanni Mariutti, Petra Schwarz, Lidia Madrigal, Marija Mitrovic, Stefano Sellitto, Nathalie Streichenberger, Claudia Scheckel, Adriano Aguzzi\",\"doi\":\"10.1371/journal.ppat.1012552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In prion diseases (PrDs), aggregates of misfolded prion protein (PrP<jats:sup>Sc</jats:sup>) accumulate not only in the brain but also in extraneural organs. This raises the question whether prion-specific pathologies arise also extraneurally. Here we sequenced mRNA transcripts in skeletal muscle, spleen and blood of prion-inoculated mice at eight timepoints during disease progression. We detected gene-expression changes in all three organs, with skeletal muscle showing the most consistent alterations. The glutamate-ammonia ligase (<jats:italic>GLUL</jats:italic>) gene exhibited uniform upregulation in skeletal muscles of mice infected with three distinct scrapie prion strains (RML, ME7, and 22L) and in victims of human sporadic Creutzfeldt-Jakob disease. <jats:italic>GLUL</jats:italic> dysregulation was accompanied by changes in glutamate/glutamine metabolism, leading to reduced glutamate levels in skeletal muscle. None of these changes were observed in skeletal muscle of humans with amyotrophic lateral sclerosis, Alzheimer’s disease, or dementia with Lewy bodies, suggesting that they are specific to prion diseases. These findings reveal an unexpected metabolic dimension of prion infections and point to a potential role for GLUL dysregulation in the glutamate/glutamine metabolism in prion-affected skeletal muscle.\",\"PeriodicalId\":20178,\"journal\":{\"name\":\"PLoS Pathogens\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.ppat.1012552\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012552","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
Prion diseases disrupt glutamate/glutamine metabolism in skeletal muscle
In prion diseases (PrDs), aggregates of misfolded prion protein (PrPSc) accumulate not only in the brain but also in extraneural organs. This raises the question whether prion-specific pathologies arise also extraneurally. Here we sequenced mRNA transcripts in skeletal muscle, spleen and blood of prion-inoculated mice at eight timepoints during disease progression. We detected gene-expression changes in all three organs, with skeletal muscle showing the most consistent alterations. The glutamate-ammonia ligase (GLUL) gene exhibited uniform upregulation in skeletal muscles of mice infected with three distinct scrapie prion strains (RML, ME7, and 22L) and in victims of human sporadic Creutzfeldt-Jakob disease. GLUL dysregulation was accompanied by changes in glutamate/glutamine metabolism, leading to reduced glutamate levels in skeletal muscle. None of these changes were observed in skeletal muscle of humans with amyotrophic lateral sclerosis, Alzheimer’s disease, or dementia with Lewy bodies, suggesting that they are specific to prion diseases. These findings reveal an unexpected metabolic dimension of prion infections and point to a potential role for GLUL dysregulation in the glutamate/glutamine metabolism in prion-affected skeletal muscle.
期刊介绍:
Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.