草酰乙酸无性繁殖对植物病原真菌禾本科镰刀菌和草孢菌致病性的不同贡献

IF 6.7 1区 医学 Q1 Immunology and Microbiology PLoS Pathogens Pub Date : 2024-09-09 DOI:10.1371/journal.ppat.1012544
Soobin Shin, Seonghun Bong, Heeji Moon, Hosung Jeon, Hun Kim, Gyung Ja Choi, Do Yup Lee, Hokyoung Son
{"title":"草酰乙酸无性繁殖对植物病原真菌禾本科镰刀菌和草孢菌致病性的不同贡献","authors":"Soobin Shin, Seonghun Bong, Heeji Moon, Hosung Jeon, Hun Kim, Gyung Ja Choi, Do Yup Lee, Hokyoung Son","doi":"10.1371/journal.ppat.1012544","DOIUrl":null,"url":null,"abstract":"Anaplerosis refers to enzymatic reactions or pathways replenishing metabolic intermediates in the tricarboxylic acid (TCA) cycle. Pyruvate carboxylase (PYC) plays an important anaplerotic role by catalyzing pyruvate carboxylation, forming oxaloacetate. Although PYC orthologs are well conserved in prokaryotes and eukaryotes, their pathobiological functions in filamentous pathogenic fungi have yet to be fully understood. Here, we delve into the molecular functions of the ortholog gene <jats:italic>PYC1</jats:italic> in <jats:italic>Fusarium graminearum</jats:italic> and <jats:italic>F</jats:italic>. <jats:italic>oxysporum</jats:italic>, prominent fungal plant pathogens with distinct pathosystems, demonstrating variations in carbon metabolism for pathogenesis. Surprisingly, the <jats:italic>PYC1</jats:italic> deletion mutant of <jats:italic>F</jats:italic>. <jats:italic>oxysporum</jats:italic> exhibited pleiotropic defects in hyphal growth, conidiation, and virulence, unlike <jats:italic>F</jats:italic>. <jats:italic>graminearum</jats:italic>, where <jats:italic>PYC1</jats:italic> deletion did not significantly impact virulence. To further explore the species-specific effects of <jats:italic>PYC1</jats:italic> deletion on pathogenicity, we conducted comprehensive metabolic profiling. Despite shared metabolic changes, distinct reprogramming in central carbon and nitrogen metabolism was identified. Specifically, alpha-ketoglutarate, a key link between the TCA cycle and amino acid metabolism, showed significant down-regulation exclusively in the <jats:italic>PYC1</jats:italic> deletion mutant of <jats:italic>F</jats:italic>. <jats:italic>oxysporum</jats:italic>. The metabolic response associated with pathogenicity was notably characterized by S-methyl-5-thioadenosine and S-adenosyl-L-methionine. This research sheds light on how <jats:italic>PYC1</jats:italic>-mediated anaplerosis affects fungal metabolism and reveals species-specific variations, exemplified in <jats:italic>F</jats:italic>. <jats:italic>graminearum</jats:italic> and <jats:italic>F</jats:italic>. <jats:italic>oxysporum</jats:italic>.","PeriodicalId":20178,"journal":{"name":"PLoS Pathogens","volume":"14 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxaloacetate anaplerosis differently contributes to pathogenicity in plant pathogenic fungi Fusarium graminearum and F. oxysporum\",\"authors\":\"Soobin Shin, Seonghun Bong, Heeji Moon, Hosung Jeon, Hun Kim, Gyung Ja Choi, Do Yup Lee, Hokyoung Son\",\"doi\":\"10.1371/journal.ppat.1012544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Anaplerosis refers to enzymatic reactions or pathways replenishing metabolic intermediates in the tricarboxylic acid (TCA) cycle. Pyruvate carboxylase (PYC) plays an important anaplerotic role by catalyzing pyruvate carboxylation, forming oxaloacetate. Although PYC orthologs are well conserved in prokaryotes and eukaryotes, their pathobiological functions in filamentous pathogenic fungi have yet to be fully understood. Here, we delve into the molecular functions of the ortholog gene <jats:italic>PYC1</jats:italic> in <jats:italic>Fusarium graminearum</jats:italic> and <jats:italic>F</jats:italic>. <jats:italic>oxysporum</jats:italic>, prominent fungal plant pathogens with distinct pathosystems, demonstrating variations in carbon metabolism for pathogenesis. Surprisingly, the <jats:italic>PYC1</jats:italic> deletion mutant of <jats:italic>F</jats:italic>. <jats:italic>oxysporum</jats:italic> exhibited pleiotropic defects in hyphal growth, conidiation, and virulence, unlike <jats:italic>F</jats:italic>. <jats:italic>graminearum</jats:italic>, where <jats:italic>PYC1</jats:italic> deletion did not significantly impact virulence. To further explore the species-specific effects of <jats:italic>PYC1</jats:italic> deletion on pathogenicity, we conducted comprehensive metabolic profiling. Despite shared metabolic changes, distinct reprogramming in central carbon and nitrogen metabolism was identified. Specifically, alpha-ketoglutarate, a key link between the TCA cycle and amino acid metabolism, showed significant down-regulation exclusively in the <jats:italic>PYC1</jats:italic> deletion mutant of <jats:italic>F</jats:italic>. <jats:italic>oxysporum</jats:italic>. The metabolic response associated with pathogenicity was notably characterized by S-methyl-5-thioadenosine and S-adenosyl-L-methionine. This research sheds light on how <jats:italic>PYC1</jats:italic>-mediated anaplerosis affects fungal metabolism and reveals species-specific variations, exemplified in <jats:italic>F</jats:italic>. <jats:italic>graminearum</jats:italic> and <jats:italic>F</jats:italic>. <jats:italic>oxysporum</jats:italic>.\",\"PeriodicalId\":20178,\"journal\":{\"name\":\"PLoS Pathogens\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Pathogens\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.ppat.1012544\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Immunology and Microbiology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Pathogens","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1371/journal.ppat.1012544","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Immunology and Microbiology","Score":null,"Total":0}
引用次数: 0

摘要

无氧代谢是指补充三羧酸(TCA)循环中代谢中间产物的酶促反应或途径。丙酮酸羧化酶(PYC)通过催化丙酮酸羧化形成草酰乙酸,发挥着重要的无功补偿作用。虽然PYC的同源物在原核生物和真核生物中十分保守,但它们在丝状致病真菌中的病理生物学功能尚未完全清楚。在这里,我们深入研究了禾谷镰刀菌(Fusarium graminearum)和氧孢镰刀菌(F. oxysporum)中PYC1直向同源基因的分子功能。令人惊讶的是,氧孢镰刀菌的PYC1缺失突变体在头状花序生长、分生孢子和毒力方面表现出多效应缺陷,而禾谷镰刀菌则不同,其PYC1缺失对毒力没有显著影响。为了进一步探索PYC1缺失对致病性的物种特异性影响,我们进行了全面的代谢分析。尽管发生了共同的代谢变化,但在中心碳和氮代谢中发现了不同的重编程。具体来说,作为 TCA 循环和氨基酸代谢之间的关键环节,α-酮戊二酸仅在 F. oxysporum 的PYC1 基因缺失突变体中出现了显著的下调。与致病性相关的代谢反应主要以 S-甲基-5-硫代腺苷和 S-腺苷-L-蛋氨酸为特征。这项研究揭示了PYC1介导的无丝分裂如何影响真菌代谢,并揭示了禾谷镰刀菌和草孢镰刀菌的物种特异性差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oxaloacetate anaplerosis differently contributes to pathogenicity in plant pathogenic fungi Fusarium graminearum and F. oxysporum
Anaplerosis refers to enzymatic reactions or pathways replenishing metabolic intermediates in the tricarboxylic acid (TCA) cycle. Pyruvate carboxylase (PYC) plays an important anaplerotic role by catalyzing pyruvate carboxylation, forming oxaloacetate. Although PYC orthologs are well conserved in prokaryotes and eukaryotes, their pathobiological functions in filamentous pathogenic fungi have yet to be fully understood. Here, we delve into the molecular functions of the ortholog gene PYC1 in Fusarium graminearum and F. oxysporum, prominent fungal plant pathogens with distinct pathosystems, demonstrating variations in carbon metabolism for pathogenesis. Surprisingly, the PYC1 deletion mutant of F. oxysporum exhibited pleiotropic defects in hyphal growth, conidiation, and virulence, unlike F. graminearum, where PYC1 deletion did not significantly impact virulence. To further explore the species-specific effects of PYC1 deletion on pathogenicity, we conducted comprehensive metabolic profiling. Despite shared metabolic changes, distinct reprogramming in central carbon and nitrogen metabolism was identified. Specifically, alpha-ketoglutarate, a key link between the TCA cycle and amino acid metabolism, showed significant down-regulation exclusively in the PYC1 deletion mutant of F. oxysporum. The metabolic response associated with pathogenicity was notably characterized by S-methyl-5-thioadenosine and S-adenosyl-L-methionine. This research sheds light on how PYC1-mediated anaplerosis affects fungal metabolism and reveals species-specific variations, exemplified in F. graminearum and F. oxysporum.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Pathogens
PLoS Pathogens 生物-病毒学
CiteScore
11.40
自引率
3.00%
发文量
598
审稿时长
2 months
期刊介绍: Bacteria, fungi, parasites, prions and viruses cause a plethora of diseases that have important medical, agricultural, and economic consequences. Moreover, the study of microbes continues to provide novel insights into such fundamental processes as the molecular basis of cellular and organismal function.
期刊最新文献
Glaesserella parasuis serotype 4 exploits fibronectin via RlpA for tracheal colonization following porcine circovirus type 2 infection Turning the needle into the haystack: Culture-independent amplification of complex microbial genomes directly from their native environment Drivers of diversification in fungal pathogen populations α-Synuclein strain propagation is independent of cellular prion protein expression in a transgenic synucleinopathy mouse model A comprehensive study of SARS-CoV-2 mfigain protease (Mpro) inhibitor-resistant mutants selected in a VSV-based system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1