基于多摄像头系统和透视最大化模型的纱线毛羽测量

IF 1 4区 计算机科学 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Electronic Imaging Pub Date : 2024-08-01 DOI:10.1117/1.jei.33.4.043043
Hongyan Cao, Zhenze Chen, Haihua Hu, Xiangbing Huai, Hao Zhu, Zhongjian Li
{"title":"基于多摄像头系统和透视最大化模型的纱线毛羽测量","authors":"Hongyan Cao, Zhenze Chen, Haihua Hu, Xiangbing Huai, Hao Zhu, Zhongjian Li","doi":"10.1117/1.jei.33.4.043043","DOIUrl":null,"url":null,"abstract":"Accurate measurement and identification of the number and length of yarn hairiness is crucial for spinning process optimization and product quality control. However, the existing methods have problems, such as low detection accuracy and efficiency, and incomplete detection. In order to overcome the above defects, an image acquisition device based on a multi-camera system is established to accurately obtain multiple perspectives of hairiness images. An automatic threshold segmentation method based on the local bimodal is proposed based on image difference, convolution kernel enhancement, and histogram equalization. Then, the clear and unbroken yarn hairiness segmentation images are obtained according to the hairiness edge extraction method. Finally, a perspective maximization model is proposed to realize the calculation of the hairiness H value and the number of hairiness in interval. Six kinds of cotton ring-spun yarn with different linear densities are tested using the proposed method, YG133B/M instrument, manual method, and single perspective method. The results show that the proposed multi-camera method can realize the index measurement of the yarn hairiness.","PeriodicalId":54843,"journal":{"name":"Journal of Electronic Imaging","volume":"11 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Yarn hairiness measurement based on multi-camera system and perspective maximization model\",\"authors\":\"Hongyan Cao, Zhenze Chen, Haihua Hu, Xiangbing Huai, Hao Zhu, Zhongjian Li\",\"doi\":\"10.1117/1.jei.33.4.043043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate measurement and identification of the number and length of yarn hairiness is crucial for spinning process optimization and product quality control. However, the existing methods have problems, such as low detection accuracy and efficiency, and incomplete detection. In order to overcome the above defects, an image acquisition device based on a multi-camera system is established to accurately obtain multiple perspectives of hairiness images. An automatic threshold segmentation method based on the local bimodal is proposed based on image difference, convolution kernel enhancement, and histogram equalization. Then, the clear and unbroken yarn hairiness segmentation images are obtained according to the hairiness edge extraction method. Finally, a perspective maximization model is proposed to realize the calculation of the hairiness H value and the number of hairiness in interval. Six kinds of cotton ring-spun yarn with different linear densities are tested using the proposed method, YG133B/M instrument, manual method, and single perspective method. The results show that the proposed multi-camera method can realize the index measurement of the yarn hairiness.\",\"PeriodicalId\":54843,\"journal\":{\"name\":\"Journal of Electronic Imaging\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electronic Imaging\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jei.33.4.043043\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electronic Imaging","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1117/1.jei.33.4.043043","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

精确测量和识别纱线毛羽的数量和长度对于纺纱工艺优化和产品质量控制至关重要。然而,现有方法存在检测精度和效率低、检测不全面等问题。为了克服上述缺陷,建立了一种基于多摄像头系统的图像采集装置,以精确获取多角度的毛羽图像。在图像差分、卷积核增强和直方图均衡化的基础上,提出了一种基于局部双模态的自动阈值分割方法。然后,根据毛羽边缘提取方法,得到清晰、完整的纱线毛羽分割图像。最后,提出了透视最大化模型,实现了毛羽 H 值和区间毛羽数的计算。使用提出的方法、YG133B/M 仪器、手动方法和单透视法测试了六种不同线性密度的棉环锭纺纱线。结果表明,所提出的多摄像头方法可以实现纱线毛羽的指标测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Yarn hairiness measurement based on multi-camera system and perspective maximization model
Accurate measurement and identification of the number and length of yarn hairiness is crucial for spinning process optimization and product quality control. However, the existing methods have problems, such as low detection accuracy and efficiency, and incomplete detection. In order to overcome the above defects, an image acquisition device based on a multi-camera system is established to accurately obtain multiple perspectives of hairiness images. An automatic threshold segmentation method based on the local bimodal is proposed based on image difference, convolution kernel enhancement, and histogram equalization. Then, the clear and unbroken yarn hairiness segmentation images are obtained according to the hairiness edge extraction method. Finally, a perspective maximization model is proposed to realize the calculation of the hairiness H value and the number of hairiness in interval. Six kinds of cotton ring-spun yarn with different linear densities are tested using the proposed method, YG133B/M instrument, manual method, and single perspective method. The results show that the proposed multi-camera method can realize the index measurement of the yarn hairiness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Electronic Imaging
Journal of Electronic Imaging 工程技术-成像科学与照相技术
CiteScore
1.70
自引率
27.30%
发文量
341
审稿时长
4.0 months
期刊介绍: The Journal of Electronic Imaging publishes peer-reviewed papers in all technology areas that make up the field of electronic imaging and are normally considered in the design, engineering, and applications of electronic imaging systems.
期刊最新文献
DTSIDNet: a discrete wavelet and transformer based network for single image denoising Multi-head attention with reinforcement learning for supervised video summarization End-to-end multitasking network for smart container product positioning and segmentation Generative object separation in X-ray images Toward effective local dimming-driven liquid crystal displays: a deep curve estimation–based adaptive compensation solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1