利用编外机器人尾巴模拟人体姿势稳定性和肌肉激活。

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Bioinspiration & Biomimetics Pub Date : 2024-09-11 DOI:10.1088/1748-3190/ad79d0
Sajeeva Abeywardena,Zaheer Osman,Ildar Farkhatdinov
{"title":"利用编外机器人尾巴模拟人体姿势稳定性和肌肉激活。","authors":"Sajeeva Abeywardena,Zaheer Osman,Ildar Farkhatdinov","doi":"10.1088/1748-3190/ad79d0","DOIUrl":null,"url":null,"abstract":"Wearable robots have promising characteristics for human augmentation; however, the the design and specification stage needs to consider biomechanical impact. In this work, musculoskeletal software is used to assess the biomechanical implications of having a two-degrees-of-freedom supernumerary robotic tail mounted posterior to the human trunk. Forward and backward tilting motions were assessed to determine the optimal design specification. Specifically; the key criteria utilised included the centre of pressure, the dynamic wrench exerted by the tail onto the human body and a global muscle activation index. Overall, it was found that use of a supernumerary tail reduced lower limb muscle activation in quiet stance. Furthermore, the optimal design specification required a trade-off between the geometric and inertial characteristics, and the amount of muscle assistance provided by the tail to facilitate safe physical Human-Robot interaction. &#xD.","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":"12 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling human postural stability and muscle activation augmented by a supernumerary robotic tail.\",\"authors\":\"Sajeeva Abeywardena,Zaheer Osman,Ildar Farkhatdinov\",\"doi\":\"10.1088/1748-3190/ad79d0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wearable robots have promising characteristics for human augmentation; however, the the design and specification stage needs to consider biomechanical impact. In this work, musculoskeletal software is used to assess the biomechanical implications of having a two-degrees-of-freedom supernumerary robotic tail mounted posterior to the human trunk. Forward and backward tilting motions were assessed to determine the optimal design specification. Specifically; the key criteria utilised included the centre of pressure, the dynamic wrench exerted by the tail onto the human body and a global muscle activation index. Overall, it was found that use of a supernumerary tail reduced lower limb muscle activation in quiet stance. Furthermore, the optimal design specification required a trade-off between the geometric and inertial characteristics, and the amount of muscle assistance provided by the tail to facilitate safe physical Human-Robot interaction. &#xD.\",\"PeriodicalId\":55377,\"journal\":{\"name\":\"Bioinspiration & Biomimetics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioinspiration & Biomimetics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1088/1748-3190/ad79d0\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad79d0","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可穿戴机器人具有增强人体功能的良好特性,但在设计和规范阶段需要考虑生物力学影响。在这项工作中,使用了肌肉骨骼软件来评估安装在人体躯干后部的两自由度编外机器人尾巴对生物力学的影响。对前后倾斜运动进行了评估,以确定最佳设计规格。具体来说,采用的关键标准包括压力中心、尾部对人体施加的动态扳手以及整体肌肉激活指数。总之,研究发现,使用编外尾部可减少安静站立时下肢肌肉的激活。此外,最佳设计规格需要在几何和惯性特征以及尾部提供的肌肉辅助量之间进行权衡,以促进人与机器人的安全物理互动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling human postural stability and muscle activation augmented by a supernumerary robotic tail.
Wearable robots have promising characteristics for human augmentation; however, the the design and specification stage needs to consider biomechanical impact. In this work, musculoskeletal software is used to assess the biomechanical implications of having a two-degrees-of-freedom supernumerary robotic tail mounted posterior to the human trunk. Forward and backward tilting motions were assessed to determine the optimal design specification. Specifically; the key criteria utilised included the centre of pressure, the dynamic wrench exerted by the tail onto the human body and a global muscle activation index. Overall, it was found that use of a supernumerary tail reduced lower limb muscle activation in quiet stance. Furthermore, the optimal design specification required a trade-off between the geometric and inertial characteristics, and the amount of muscle assistance provided by the tail to facilitate safe physical Human-Robot interaction. .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
期刊最新文献
Stability and agility trade-offs in spring-wing systems. Genetic algorithm-based optimal design for fluidic artificial muscle (FAM) bundles. Touch-down condition control for the bipedal spring-mass model in walking. Predictive uncertainty in state-estimation drives active sensing. Analysis and actuation design of a novel at-scale 3-DOF biomimetic flapping-wing mechanism inspired by flying insects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1