Itzel Valencia, Pier Vitale Nuzzo, Edoardo Francini, Francesco Ravera, Giuseppe Nicolò Fanelli, Sara Bleve, Cristian Scatena, Luigi Marchionni, Mohamed Omar
{"title":"利用原发肿瘤表达谱预测前列腺癌转移的基因特征","authors":"Itzel Valencia, Pier Vitale Nuzzo, Edoardo Francini, Francesco Ravera, Giuseppe Nicolò Fanelli, Sara Bleve, Cristian Scatena, Luigi Marchionni, Mohamed Omar","doi":"10.1101/2024.08.30.24312735","DOIUrl":null,"url":null,"abstract":"Prostate cancer (PCa) is currently the most commonly diagnosed cancer and second leading cause of cancer-related death in men in the United States. The development of metastases is associated with a poor prognosis in PCa patients. Since current clinicopathological classification schemes are unable to accurately prognosticate the risk of metastasis for those diagnosed with localized PCa, there is a pressing need for precise and easily attainable biomarkers of metastatic risk in these patients. Primary tumor samples from 1239 individuals with PCa were divided into development (n=1000) and validation (n=239) cohorts. In the development cohort, we utilized a meta-analysis workflow on retrospective primary tumor gene expression profiles to identify a subset of genes predictive of metastasis. For each gene, we computed Hedges’ g effect size and combined their p-values using Fisher’s combined probability test. We then adjusted for multiple hypothesis testing using the Benjamini-Hochberg method. Our developed gene signature, termed Meta-Score, achieved a robust performance at predicting metastasis from primary tumor gene expression profiles, with an AUC of 0.72 in the validation cohort. In addition to its robust predictive power, Meta-Score also demonstrated a significant prognostic utility in two independent cohorts. Specifically, patients with a higher risk-score had a significantly worse metastasis-free survival and progression-free survival compared to those with lower score. Multivariate cox proportional hazards model showed that Meta-Score is significantly associated with worse survival even after adjusting for Gleason score. Our findings suggest that our primary tumor transcriptional signature, Meta-Score, could be a valuable tool to assess the risk of metastasis in PCa patients with localized disease, pending validation in large prospective studies.","PeriodicalId":501437,"journal":{"name":"medRxiv - Oncology","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gene Signature for Predicting Metastasis in Prostate Cancer Using Primary Tumor Expression Profiles\",\"authors\":\"Itzel Valencia, Pier Vitale Nuzzo, Edoardo Francini, Francesco Ravera, Giuseppe Nicolò Fanelli, Sara Bleve, Cristian Scatena, Luigi Marchionni, Mohamed Omar\",\"doi\":\"10.1101/2024.08.30.24312735\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prostate cancer (PCa) is currently the most commonly diagnosed cancer and second leading cause of cancer-related death in men in the United States. The development of metastases is associated with a poor prognosis in PCa patients. Since current clinicopathological classification schemes are unable to accurately prognosticate the risk of metastasis for those diagnosed with localized PCa, there is a pressing need for precise and easily attainable biomarkers of metastatic risk in these patients. Primary tumor samples from 1239 individuals with PCa were divided into development (n=1000) and validation (n=239) cohorts. In the development cohort, we utilized a meta-analysis workflow on retrospective primary tumor gene expression profiles to identify a subset of genes predictive of metastasis. For each gene, we computed Hedges’ g effect size and combined their p-values using Fisher’s combined probability test. We then adjusted for multiple hypothesis testing using the Benjamini-Hochberg method. Our developed gene signature, termed Meta-Score, achieved a robust performance at predicting metastasis from primary tumor gene expression profiles, with an AUC of 0.72 in the validation cohort. In addition to its robust predictive power, Meta-Score also demonstrated a significant prognostic utility in two independent cohorts. Specifically, patients with a higher risk-score had a significantly worse metastasis-free survival and progression-free survival compared to those with lower score. Multivariate cox proportional hazards model showed that Meta-Score is significantly associated with worse survival even after adjusting for Gleason score. Our findings suggest that our primary tumor transcriptional signature, Meta-Score, could be a valuable tool to assess the risk of metastasis in PCa patients with localized disease, pending validation in large prospective studies.\",\"PeriodicalId\":501437,\"journal\":{\"name\":\"medRxiv - Oncology\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.30.24312735\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.30.24312735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Gene Signature for Predicting Metastasis in Prostate Cancer Using Primary Tumor Expression Profiles
Prostate cancer (PCa) is currently the most commonly diagnosed cancer and second leading cause of cancer-related death in men in the United States. The development of metastases is associated with a poor prognosis in PCa patients. Since current clinicopathological classification schemes are unable to accurately prognosticate the risk of metastasis for those diagnosed with localized PCa, there is a pressing need for precise and easily attainable biomarkers of metastatic risk in these patients. Primary tumor samples from 1239 individuals with PCa were divided into development (n=1000) and validation (n=239) cohorts. In the development cohort, we utilized a meta-analysis workflow on retrospective primary tumor gene expression profiles to identify a subset of genes predictive of metastasis. For each gene, we computed Hedges’ g effect size and combined their p-values using Fisher’s combined probability test. We then adjusted for multiple hypothesis testing using the Benjamini-Hochberg method. Our developed gene signature, termed Meta-Score, achieved a robust performance at predicting metastasis from primary tumor gene expression profiles, with an AUC of 0.72 in the validation cohort. In addition to its robust predictive power, Meta-Score also demonstrated a significant prognostic utility in two independent cohorts. Specifically, patients with a higher risk-score had a significantly worse metastasis-free survival and progression-free survival compared to those with lower score. Multivariate cox proportional hazards model showed that Meta-Score is significantly associated with worse survival even after adjusting for Gleason score. Our findings suggest that our primary tumor transcriptional signature, Meta-Score, could be a valuable tool to assess the risk of metastasis in PCa patients with localized disease, pending validation in large prospective studies.