利用受激拉曼组织学和深度学习术中快速检测原发性中枢神经系统淋巴瘤并与常见中枢神经系统肿瘤进行鉴别

David Reinecke, Nader Maarouf, Andrew Smith, Daniel Alber, John Markert, Nicolas K. Goff, Todd C. Hollon, Asadur Chowdury, Cheng Jiang, Xinhai Hou, Anna-Katharina Meissner, Gina Fuertjes, Maximilian I. Ruge, Daniel Ruess, Thomas Stehle, Abdulkader Al-Shughri, Lisa I. Koerner, Georg Widhalm, Thomas Roetzer-Pejrimovsky, John G. Golfinos, Matija Snuderl, Volker Neuschmelting, Daniel A. Orringer
{"title":"利用受激拉曼组织学和深度学习术中快速检测原发性中枢神经系统淋巴瘤并与常见中枢神经系统肿瘤进行鉴别","authors":"David Reinecke, Nader Maarouf, Andrew Smith, Daniel Alber, John Markert, Nicolas K. Goff, Todd C. Hollon, Asadur Chowdury, Cheng Jiang, Xinhai Hou, Anna-Katharina Meissner, Gina Fuertjes, Maximilian I. Ruge, Daniel Ruess, Thomas Stehle, Abdulkader Al-Shughri, Lisa I. Koerner, Georg Widhalm, Thomas Roetzer-Pejrimovsky, John G. Golfinos, Matija Snuderl, Volker Neuschmelting, Daniel A. Orringer","doi":"10.1101/2024.08.25.24312509","DOIUrl":null,"url":null,"abstract":"Accurate intraoperative diagnosis is crucial for differentiating between primary CNS lymphoma (PCNSL) and other CNS entities, guiding surgical decision-making, but represents significant challenges due to overlapping histomorphological features, time constraints, and differing treatment strategies. We combined stimulated Raman histology (SRH) with deep learning to address this challenge. We imaged unprocessed, label-free tissue samples intraoperatively using a portable Raman scattering microscope, generating virtual H&E-like images within less than three minutes. We developed a deep learning pipeline called RapidLymphoma based on a self-supervised learning strategy to (1) detect PCNSL, (2) differentiate from other CNS entities, and (3) test the diagnostic performance in a prospective international multicenter cohort and two additional independent test cohorts. We trained on 54,000 SRH patch images sourced from surgical resections and stereotactic-guided biopsies, including various CNS tumor/non-tumor lesions. Training and test data were collected from four tertiary international medical centers. The final histopathological diagnosis served as ground-truth. In the prospective test cohort of PCNSL and non-PCNSL entities (n=160), RapidLymphoma achieved an overall balanced accuracy of 97.81%, non-inferior to frozen section analysis in detecting PCNSL (100% vs. 78.94%). The additional test cohorts (n=420, n=59) reached balanced accuracy rates of 95.44% and 95.57% in differentiating IDH-wildtype diffuse gliomas and various brain metastasis from PCNSL. Visual heatmaps revealed capabilities to detect class-specific histomorphological key features.\nRapidLymphoma proves reliable and valid for intraoperative PCNSL detection and differentiation from other CNS entities. It provides visual feedback within three minutes, enabling fast clinical decision-making and subsequent treatment strategy planning.","PeriodicalId":501437,"journal":{"name":"medRxiv - Oncology","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast intraoperative detection of primary CNS lymphoma and differentiation from common CNS tumors using stimulated Raman histology and deep learning\",\"authors\":\"David Reinecke, Nader Maarouf, Andrew Smith, Daniel Alber, John Markert, Nicolas K. Goff, Todd C. Hollon, Asadur Chowdury, Cheng Jiang, Xinhai Hou, Anna-Katharina Meissner, Gina Fuertjes, Maximilian I. Ruge, Daniel Ruess, Thomas Stehle, Abdulkader Al-Shughri, Lisa I. Koerner, Georg Widhalm, Thomas Roetzer-Pejrimovsky, John G. Golfinos, Matija Snuderl, Volker Neuschmelting, Daniel A. Orringer\",\"doi\":\"10.1101/2024.08.25.24312509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate intraoperative diagnosis is crucial for differentiating between primary CNS lymphoma (PCNSL) and other CNS entities, guiding surgical decision-making, but represents significant challenges due to overlapping histomorphological features, time constraints, and differing treatment strategies. We combined stimulated Raman histology (SRH) with deep learning to address this challenge. We imaged unprocessed, label-free tissue samples intraoperatively using a portable Raman scattering microscope, generating virtual H&E-like images within less than three minutes. We developed a deep learning pipeline called RapidLymphoma based on a self-supervised learning strategy to (1) detect PCNSL, (2) differentiate from other CNS entities, and (3) test the diagnostic performance in a prospective international multicenter cohort and two additional independent test cohorts. We trained on 54,000 SRH patch images sourced from surgical resections and stereotactic-guided biopsies, including various CNS tumor/non-tumor lesions. Training and test data were collected from four tertiary international medical centers. The final histopathological diagnosis served as ground-truth. In the prospective test cohort of PCNSL and non-PCNSL entities (n=160), RapidLymphoma achieved an overall balanced accuracy of 97.81%, non-inferior to frozen section analysis in detecting PCNSL (100% vs. 78.94%). The additional test cohorts (n=420, n=59) reached balanced accuracy rates of 95.44% and 95.57% in differentiating IDH-wildtype diffuse gliomas and various brain metastasis from PCNSL. Visual heatmaps revealed capabilities to detect class-specific histomorphological key features.\\nRapidLymphoma proves reliable and valid for intraoperative PCNSL detection and differentiation from other CNS entities. It provides visual feedback within three minutes, enabling fast clinical decision-making and subsequent treatment strategy planning.\",\"PeriodicalId\":501437,\"journal\":{\"name\":\"medRxiv - Oncology\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.25.24312509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.25.24312509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确的术中诊断对于区分原发性中枢神经系统淋巴瘤(PCNSL)和其他中枢神经系统实体、指导手术决策至关重要,但由于组织形态学特征重叠、时间限制和治疗策略不同,术中诊断面临着巨大挑战。我们将受激拉曼组织学(SRH)与深度学习相结合,以应对这一挑战。我们在术中使用便携式拉曼散射显微镜对未经处理的无标记组织样本进行成像,在不到三分钟的时间内生成类似于 H&E 的虚拟图像。我们基于自监督学习策略开发了一种名为 RapidLymphoma 的深度学习管道,用于(1)检测 PCNSL,(2)与其他中枢神经系统实体进行区分,(3)在一个前瞻性国际多中心队列和另外两个独立测试队列中测试诊断性能。我们对 54,000 张 SRH 补丁图像进行了训练,这些图像来自手术切除和立体定向引导活检,包括各种中枢神经系统肿瘤/非肿瘤病变。训练和测试数据来自四个三级国际医疗中心。最终的组织病理学诊断为基础真相。在 PCNSL 和非 PCNSL 实体的前瞻性测试队列(n=160)中,RapidLymphoma 的总体平衡准确率达到 97.81%,在检测 PCNSL 方面不逊于冰冻切片分析(100% 对 78.94%)。在区分IDH-野生型弥漫性胶质瘤和各种脑转移瘤与PCNSL方面,附加测试组群(n=420、n=59)的平衡准确率分别为95.44%和95.57%。事实证明,RapidLymphoma 在术中 PCNSL 的检测和与其他中枢神经系统实体的鉴别方面是可靠和有效的。RapidLymphoma 用于术中 PCNSL 检测和与其他中枢神经系统实体的鉴别证明是可靠有效的。它能在三分钟内提供视觉反馈,从而快速做出临床决策和后续治疗策略规划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fast intraoperative detection of primary CNS lymphoma and differentiation from common CNS tumors using stimulated Raman histology and deep learning
Accurate intraoperative diagnosis is crucial for differentiating between primary CNS lymphoma (PCNSL) and other CNS entities, guiding surgical decision-making, but represents significant challenges due to overlapping histomorphological features, time constraints, and differing treatment strategies. We combined stimulated Raman histology (SRH) with deep learning to address this challenge. We imaged unprocessed, label-free tissue samples intraoperatively using a portable Raman scattering microscope, generating virtual H&E-like images within less than three minutes. We developed a deep learning pipeline called RapidLymphoma based on a self-supervised learning strategy to (1) detect PCNSL, (2) differentiate from other CNS entities, and (3) test the diagnostic performance in a prospective international multicenter cohort and two additional independent test cohorts. We trained on 54,000 SRH patch images sourced from surgical resections and stereotactic-guided biopsies, including various CNS tumor/non-tumor lesions. Training and test data were collected from four tertiary international medical centers. The final histopathological diagnosis served as ground-truth. In the prospective test cohort of PCNSL and non-PCNSL entities (n=160), RapidLymphoma achieved an overall balanced accuracy of 97.81%, non-inferior to frozen section analysis in detecting PCNSL (100% vs. 78.94%). The additional test cohorts (n=420, n=59) reached balanced accuracy rates of 95.44% and 95.57% in differentiating IDH-wildtype diffuse gliomas and various brain metastasis from PCNSL. Visual heatmaps revealed capabilities to detect class-specific histomorphological key features. RapidLymphoma proves reliable and valid for intraoperative PCNSL detection and differentiation from other CNS entities. It provides visual feedback within three minutes, enabling fast clinical decision-making and subsequent treatment strategy planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluating Observer Reliability and Diagnostic Accuracy of CT-LEFAT Criteria for Post-Treatment Head and Neck Lymphedema: A Prospective Blinded Comparative Analysis of Oncologist Human Inter-Rater Performance Whole Genome Sequencing and single-cell transcriptomics identify KMT2D as a potential new driver for pituitary adenomas Self Reported Financial Difficulties Among Patients with Multiple Myeloma and Chronis Lymphocytic Leukemia Treated at U.S. Community Oncology Clinics (Alliance A231602CD) First-in-human evaluation of memory-like NK cells with an IL-15 super-agonist and CTLA-4 blockade in advanced head and neck cancer Viral transcript and tumor immune microenvironment-based transcriptomic profiling of HPV-associated head and neck squamous cell carcinoma identifies subtypes associated with prognosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1