Kamal Bella, Azidine Guezzaz, Said Benkirane, Mourade Azrour, Yasser Fouad, Mbadiwe S. Benyeogor, Nisreen Innab
{"title":"使用 CNN 决策森林的高效物联网安全入侵检测系统","authors":"Kamal Bella, Azidine Guezzaz, Said Benkirane, Mourade Azrour, Yasser Fouad, Mbadiwe S. Benyeogor, Nisreen Innab","doi":"10.7717/peerj-cs.2290","DOIUrl":null,"url":null,"abstract":"The adoption and integration of the Internet of Things (IoT) have become essential for the advancement of many industries, unlocking purposeful connections between objects. However, the surge in IoT adoption and integration has also made it a prime target for malicious attacks. Consequently, ensuring the security of IoT systems and ecosystems has emerged as a crucial research area. Notably, advancements in addressing these security threats include the implementation of intrusion detection systems (IDS), garnering considerable attention within the research community. In this study, and in aim to enhance network anomaly detection, we present a novel intrusion detection approach: the Deep Neural Decision Forest-based IDS (DNDF-IDS). The DNDF-IDS incorporates an improved decision forest model coupled with neural networks to achieve heightened accuracy (ACC). Employing four distinct feature selection methods separately, namely principal component analysis (PCA), LASSO regression (LR), SelectKBest, and Random Forest Feature Importance (RFFI), our objective is to streamline training and prediction processes, enhance overall performance, and identify the most correlated features. Evaluation of our model on three diverse datasets (NSL-KDD, CICIDS2017, and UNSW-NB15) reveals impressive ACC values ranging from 94.09% to 98.84%, depending on the dataset and the feature selection method. Notably, our model achieves a remarkable prediction time of 0.1 ms per record. Comparative analyses with other recent random forest and Convolutional Neural Networks (CNN) based models indicate that our DNDF-IDS performs similarly or even outperforms them in certain instances, particularly when utilizing the top 10 features. One key advantage of our novel model lies in its ability to make accurate predictions with only a few features, showcasing an efficient utilization of computational resources.","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"106 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An efficient intrusion detection system for IoT security using CNN decision forest\",\"authors\":\"Kamal Bella, Azidine Guezzaz, Said Benkirane, Mourade Azrour, Yasser Fouad, Mbadiwe S. Benyeogor, Nisreen Innab\",\"doi\":\"10.7717/peerj-cs.2290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adoption and integration of the Internet of Things (IoT) have become essential for the advancement of many industries, unlocking purposeful connections between objects. However, the surge in IoT adoption and integration has also made it a prime target for malicious attacks. Consequently, ensuring the security of IoT systems and ecosystems has emerged as a crucial research area. Notably, advancements in addressing these security threats include the implementation of intrusion detection systems (IDS), garnering considerable attention within the research community. In this study, and in aim to enhance network anomaly detection, we present a novel intrusion detection approach: the Deep Neural Decision Forest-based IDS (DNDF-IDS). The DNDF-IDS incorporates an improved decision forest model coupled with neural networks to achieve heightened accuracy (ACC). Employing four distinct feature selection methods separately, namely principal component analysis (PCA), LASSO regression (LR), SelectKBest, and Random Forest Feature Importance (RFFI), our objective is to streamline training and prediction processes, enhance overall performance, and identify the most correlated features. Evaluation of our model on three diverse datasets (NSL-KDD, CICIDS2017, and UNSW-NB15) reveals impressive ACC values ranging from 94.09% to 98.84%, depending on the dataset and the feature selection method. Notably, our model achieves a remarkable prediction time of 0.1 ms per record. Comparative analyses with other recent random forest and Convolutional Neural Networks (CNN) based models indicate that our DNDF-IDS performs similarly or even outperforms them in certain instances, particularly when utilizing the top 10 features. One key advantage of our novel model lies in its ability to make accurate predictions with only a few features, showcasing an efficient utilization of computational resources.\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2290\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2290","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
An efficient intrusion detection system for IoT security using CNN decision forest
The adoption and integration of the Internet of Things (IoT) have become essential for the advancement of many industries, unlocking purposeful connections between objects. However, the surge in IoT adoption and integration has also made it a prime target for malicious attacks. Consequently, ensuring the security of IoT systems and ecosystems has emerged as a crucial research area. Notably, advancements in addressing these security threats include the implementation of intrusion detection systems (IDS), garnering considerable attention within the research community. In this study, and in aim to enhance network anomaly detection, we present a novel intrusion detection approach: the Deep Neural Decision Forest-based IDS (DNDF-IDS). The DNDF-IDS incorporates an improved decision forest model coupled with neural networks to achieve heightened accuracy (ACC). Employing four distinct feature selection methods separately, namely principal component analysis (PCA), LASSO regression (LR), SelectKBest, and Random Forest Feature Importance (RFFI), our objective is to streamline training and prediction processes, enhance overall performance, and identify the most correlated features. Evaluation of our model on three diverse datasets (NSL-KDD, CICIDS2017, and UNSW-NB15) reveals impressive ACC values ranging from 94.09% to 98.84%, depending on the dataset and the feature selection method. Notably, our model achieves a remarkable prediction time of 0.1 ms per record. Comparative analyses with other recent random forest and Convolutional Neural Networks (CNN) based models indicate that our DNDF-IDS performs similarly or even outperforms them in certain instances, particularly when utilizing the top 10 features. One key advantage of our novel model lies in its ability to make accurate predictions with only a few features, showcasing an efficient utilization of computational resources.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.