{"title":"基于离散余弦变换 (DCT) 的频率分布感知网络,用于遥感图像超分辨率","authors":"Yunsong Li, Debao Yuan","doi":"10.7717/peerj-cs.2255","DOIUrl":null,"url":null,"abstract":"Single-image super-resolution technology based on deep learning is widely used in remote sensing. The non-local feature reflects the correlation information between different regions. Most neural networks extract various non-local information of images in the spatial domain but ignore the similarity characteristics of frequency distribution, which limits the performance of the algorithm. To solve this problem, we propose a frequency distribution aware network based on discrete cosine transformation for remote sensing image super-resolution. This network first proposes a frequency-aware module. This module can effectively extract the similarity characteristics of the frequency distribution between different regions by rearranging the frequency feature matrix of the image. A global frequency feature fusion module is also proposed. It can extract the non-local information of feature maps at different scales in the frequency domain with little computational cost. The experiments were on two commonly-used remote sensing datasets. The experimental results show that the proposed algorithm can effectively complete image reconstruction and performs better than some advanced super-resolution algorithms. The code is available at https://github.com/Liyszepc/FDANet.","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"3 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency distribution-aware network based on discrete cosine transformation (DCT) for remote sensing image super resolution\",\"authors\":\"Yunsong Li, Debao Yuan\",\"doi\":\"10.7717/peerj-cs.2255\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-image super-resolution technology based on deep learning is widely used in remote sensing. The non-local feature reflects the correlation information between different regions. Most neural networks extract various non-local information of images in the spatial domain but ignore the similarity characteristics of frequency distribution, which limits the performance of the algorithm. To solve this problem, we propose a frequency distribution aware network based on discrete cosine transformation for remote sensing image super-resolution. This network first proposes a frequency-aware module. This module can effectively extract the similarity characteristics of the frequency distribution between different regions by rearranging the frequency feature matrix of the image. A global frequency feature fusion module is also proposed. It can extract the non-local information of feature maps at different scales in the frequency domain with little computational cost. The experiments were on two commonly-used remote sensing datasets. The experimental results show that the proposed algorithm can effectively complete image reconstruction and performs better than some advanced super-resolution algorithms. The code is available at https://github.com/Liyszepc/FDANet.\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2255\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2255","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Frequency distribution-aware network based on discrete cosine transformation (DCT) for remote sensing image super resolution
Single-image super-resolution technology based on deep learning is widely used in remote sensing. The non-local feature reflects the correlation information between different regions. Most neural networks extract various non-local information of images in the spatial domain but ignore the similarity characteristics of frequency distribution, which limits the performance of the algorithm. To solve this problem, we propose a frequency distribution aware network based on discrete cosine transformation for remote sensing image super-resolution. This network first proposes a frequency-aware module. This module can effectively extract the similarity characteristics of the frequency distribution between different regions by rearranging the frequency feature matrix of the image. A global frequency feature fusion module is also proposed. It can extract the non-local information of feature maps at different scales in the frequency domain with little computational cost. The experiments were on two commonly-used remote sensing datasets. The experimental results show that the proposed algorithm can effectively complete image reconstruction and performs better than some advanced super-resolution algorithms. The code is available at https://github.com/Liyszepc/FDANet.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.