预测学生在 MOOC 中的成功:利用机器学习模型进行综合分析

IF 3.5 4区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE PeerJ Computer Science Pub Date : 2024-08-23 DOI:10.7717/peerj-cs.2221
Hosam A. Althibyani
{"title":"预测学生在 MOOC 中的成功:利用机器学习模型进行综合分析","authors":"Hosam A. Althibyani","doi":"10.7717/peerj-cs.2221","DOIUrl":null,"url":null,"abstract":"Background This study was motivated by the increasing popularity of Massive Open Online Courses (MOOCs) and the challenges they face, such as high dropout and failure rates. The existing knowledge primarily focused on predicting student dropout, but this study aimed to go beyond that by predicting both student dropout and course results. By using machine learning models and analyzing various data sources, the study sought to improve our understanding of factors influencing student success in MOOCs. Objectives The primary aim of this research was to develop accurate predictions of students’ course outcomes in MOOCs, specifically whether they would pass or fail. Unlike previous studies, this study took into account demographic, assessment, and student interaction data to provide comprehensive predictions. Methods The study utilized demographic, assessment, and student interaction data to develop predictive models. Two machine learning methods, logistic regression, and random forest classification were employed to predict students’ course outcomes. The accuracy of the models was evaluated based on four-class classification (predicting four possible outcomes) and two-class classification (predicting pass or fail). Results and Conclusions The study found that simple indicators, such as a student’s activity level on a given day, could be as effective as more complex data combinations or personal information in predicting student success. The logistic regression model achieved an accuracy of 72.1% for four-class classification and 92.4% for 2-class classification, while the random forest classifier achieved an accuracy of 74.6% for four-class classification and 95.7% for two-class classification. These findings highlight the potential of machine learning models in predicting and understanding students’ course outcomes in MOOCs, offering valuable insights for improving student engagement and success in online learning environments.","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting student success in MOOCs: a comprehensive analysis using machine learning models\",\"authors\":\"Hosam A. Althibyani\",\"doi\":\"10.7717/peerj-cs.2221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background This study was motivated by the increasing popularity of Massive Open Online Courses (MOOCs) and the challenges they face, such as high dropout and failure rates. The existing knowledge primarily focused on predicting student dropout, but this study aimed to go beyond that by predicting both student dropout and course results. By using machine learning models and analyzing various data sources, the study sought to improve our understanding of factors influencing student success in MOOCs. Objectives The primary aim of this research was to develop accurate predictions of students’ course outcomes in MOOCs, specifically whether they would pass or fail. Unlike previous studies, this study took into account demographic, assessment, and student interaction data to provide comprehensive predictions. Methods The study utilized demographic, assessment, and student interaction data to develop predictive models. Two machine learning methods, logistic regression, and random forest classification were employed to predict students’ course outcomes. The accuracy of the models was evaluated based on four-class classification (predicting four possible outcomes) and two-class classification (predicting pass or fail). Results and Conclusions The study found that simple indicators, such as a student’s activity level on a given day, could be as effective as more complex data combinations or personal information in predicting student success. The logistic regression model achieved an accuracy of 72.1% for four-class classification and 92.4% for 2-class classification, while the random forest classifier achieved an accuracy of 74.6% for four-class classification and 95.7% for two-class classification. These findings highlight the potential of machine learning models in predicting and understanding students’ course outcomes in MOOCs, offering valuable insights for improving student engagement and success in online learning environments.\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2221\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2221","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

研究背景 这项研究的动机是,大规模开放在线课程(MOOCs)越来越受欢迎,但也面临着一些挑战,如辍学率和失败率较高。现有的知识主要集中在预测学生辍学率上,但本研究旨在通过预测学生辍学率和课程成绩来超越这一点。通过使用机器学习模型和分析各种数据源,本研究试图加深我们对影响学生在 MOOCs 中取得成功的因素的理解。研究目标 本研究的主要目的是准确预测学生在 MOOC 课程中的学习效果,特别是预测他们是通过还是失败。与以往的研究不同,本研究考虑了人口统计学、评估和学生互动数据,以提供全面的预测。方法 本研究利用人口统计学、评估和学生互动数据来开发预测模型。采用逻辑回归和随机森林分类两种机器学习方法来预测学生的课程结果。根据四级分类(预测四种可能的结果)和两级分类(预测及格或不及格)对模型的准确性进行了评估。结果和结论 研究发现,在预测学生成功方面,简单的指标(如学生某天的活动量)与更复杂的数据组合或个人信息一样有效。逻辑回归模型的四级分类准确率为 72.1%,两级分类准确率为 92.4%,而随机森林分类器的四级分类准确率为 74.6%,两级分类准确率为 95.7%。这些研究结果凸显了机器学习模型在预测和了解学生在MOOCs中的课程成果方面的潜力,为提高学生在在线学习环境中的参与度和成功率提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predicting student success in MOOCs: a comprehensive analysis using machine learning models
Background This study was motivated by the increasing popularity of Massive Open Online Courses (MOOCs) and the challenges they face, such as high dropout and failure rates. The existing knowledge primarily focused on predicting student dropout, but this study aimed to go beyond that by predicting both student dropout and course results. By using machine learning models and analyzing various data sources, the study sought to improve our understanding of factors influencing student success in MOOCs. Objectives The primary aim of this research was to develop accurate predictions of students’ course outcomes in MOOCs, specifically whether they would pass or fail. Unlike previous studies, this study took into account demographic, assessment, and student interaction data to provide comprehensive predictions. Methods The study utilized demographic, assessment, and student interaction data to develop predictive models. Two machine learning methods, logistic regression, and random forest classification were employed to predict students’ course outcomes. The accuracy of the models was evaluated based on four-class classification (predicting four possible outcomes) and two-class classification (predicting pass or fail). Results and Conclusions The study found that simple indicators, such as a student’s activity level on a given day, could be as effective as more complex data combinations or personal information in predicting student success. The logistic regression model achieved an accuracy of 72.1% for four-class classification and 92.4% for 2-class classification, while the random forest classifier achieved an accuracy of 74.6% for four-class classification and 95.7% for two-class classification. These findings highlight the potential of machine learning models in predicting and understanding students’ course outcomes in MOOCs, offering valuable insights for improving student engagement and success in online learning environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PeerJ Computer Science
PeerJ Computer Science Computer Science-General Computer Science
CiteScore
6.10
自引率
5.30%
发文量
332
审稿时长
10 weeks
期刊介绍: PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.
期刊最新文献
A model integrating attention mechanism and generative adversarial network for image style transfer. Detecting rumors in social media using emotion based deep learning approach. Harnessing AI and analytics to enhance cybersecurity and privacy for collective intelligence systems. Improving synthetic media generation and detection using generative adversarial networks. Intelligent accounting optimization method based on meta-heuristic algorithm and CNN.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1