{"title":"用于预测物联网中心脏中风风险水平的新型自适应加权双向长短期记忆(AWBi-LSTM)分类器模型","authors":"S Thumilvannan, R Balamanigandan","doi":"10.7717/peerj-cs.2196","DOIUrl":null,"url":null,"abstract":"Stroke prediction has become one of the significant research areas due to the increasing fatality rate. Hence, this article proposes a novel Adaptive Weight Bi-Directional Long Short-Term Memory (AWBi-LSTM) classifier model for stroke risk level prediction for IoT data. To efficiently train the classifier, Hybrid Genetic removes the missing data with Kmeans Algorithm (HKGA), and the data are aggregated. Then, the features are reduced with independent component analysis (ICA) to reduce the dataset size. After the correlated features are identified using the T-test-based uniform distribution-gradient search rule-based elephant herding optimization for cluster analysis (GSRBEHO) (T-test-UD-GSRBEHO). Next, the fuzzy rule-based decisions are created with the T-test-UDEHOA correlated features to classify the risk levels accurately. The feature values obtained from the fuzzy logic are given to the AWBi-LSTM classifier, which predicts and classifies the risk level of heart disease and diabetes. After the risk level is predicted, the data is securely stored in the database. Here, the MD5-Elliptic Curve Cryptography (MD5-ECC) technique is utilized for secure storage. Testing the suggested risk prediction model on the Stroke prediction dataset reveals potential efficacy. By obtaining an accuracy of 99.6%, the research outcomes demonstrated that the proposed model outperforms the existing techniques.","PeriodicalId":54224,"journal":{"name":"PeerJ Computer Science","volume":"33 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel adaptive weight bi-directional long short-term memory (AWBi-LSTM) classifier model for heart stroke risk level prediction in IoT\",\"authors\":\"S Thumilvannan, R Balamanigandan\",\"doi\":\"10.7717/peerj-cs.2196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stroke prediction has become one of the significant research areas due to the increasing fatality rate. Hence, this article proposes a novel Adaptive Weight Bi-Directional Long Short-Term Memory (AWBi-LSTM) classifier model for stroke risk level prediction for IoT data. To efficiently train the classifier, Hybrid Genetic removes the missing data with Kmeans Algorithm (HKGA), and the data are aggregated. Then, the features are reduced with independent component analysis (ICA) to reduce the dataset size. After the correlated features are identified using the T-test-based uniform distribution-gradient search rule-based elephant herding optimization for cluster analysis (GSRBEHO) (T-test-UD-GSRBEHO). Next, the fuzzy rule-based decisions are created with the T-test-UDEHOA correlated features to classify the risk levels accurately. The feature values obtained from the fuzzy logic are given to the AWBi-LSTM classifier, which predicts and classifies the risk level of heart disease and diabetes. After the risk level is predicted, the data is securely stored in the database. Here, the MD5-Elliptic Curve Cryptography (MD5-ECC) technique is utilized for secure storage. Testing the suggested risk prediction model on the Stroke prediction dataset reveals potential efficacy. By obtaining an accuracy of 99.6%, the research outcomes demonstrated that the proposed model outperforms the existing techniques.\",\"PeriodicalId\":54224,\"journal\":{\"name\":\"PeerJ Computer Science\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PeerJ Computer Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.7717/peerj-cs.2196\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PeerJ Computer Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.7717/peerj-cs.2196","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A novel adaptive weight bi-directional long short-term memory (AWBi-LSTM) classifier model for heart stroke risk level prediction in IoT
Stroke prediction has become one of the significant research areas due to the increasing fatality rate. Hence, this article proposes a novel Adaptive Weight Bi-Directional Long Short-Term Memory (AWBi-LSTM) classifier model for stroke risk level prediction for IoT data. To efficiently train the classifier, Hybrid Genetic removes the missing data with Kmeans Algorithm (HKGA), and the data are aggregated. Then, the features are reduced with independent component analysis (ICA) to reduce the dataset size. After the correlated features are identified using the T-test-based uniform distribution-gradient search rule-based elephant herding optimization for cluster analysis (GSRBEHO) (T-test-UD-GSRBEHO). Next, the fuzzy rule-based decisions are created with the T-test-UDEHOA correlated features to classify the risk levels accurately. The feature values obtained from the fuzzy logic are given to the AWBi-LSTM classifier, which predicts and classifies the risk level of heart disease and diabetes. After the risk level is predicted, the data is securely stored in the database. Here, the MD5-Elliptic Curve Cryptography (MD5-ECC) technique is utilized for secure storage. Testing the suggested risk prediction model on the Stroke prediction dataset reveals potential efficacy. By obtaining an accuracy of 99.6%, the research outcomes demonstrated that the proposed model outperforms the existing techniques.
期刊介绍:
PeerJ Computer Science is the new open access journal covering all subject areas in computer science, with the backing of a prestigious advisory board and more than 300 academic editors.