{"title":"$mathbf{T}$ 模块的 Weil-Barsotti 公式","authors":"Dawid E. Kędzierski, Piotr Krasoń","doi":"arxiv-2409.04029","DOIUrl":null,"url":null,"abstract":"In the work of M. A. Papanikolas and N. Ramachandran [A Weil-Barsotti formula\nfor Drinfeld modules, Journal of Number Theory 98, (2003), 407-431] the\nWeil-Barsotti formula for the function field case concerning\n$\\Ext_{\\tau}^1(E,C)$ where $E$ is a Drinfeld module and $C$ is the Carlitz\nmodule was proved. We generalize this formula to the case where $E$ is a\nstrictly pure \\tm module $\\Phi$ with the zero nilpotent matrix $N_\\Phi.$ For\nsuch a \\tm module $\\Phi$ we explicitly compute its dual \\tm module\n${\\Phi}^{\\vee}$ as well as its double dual ${\\Phi}^{{\\vee}{\\vee}}.$ This\ncomputation is done in a a subtle way by combination of the \\tm reduction\nalgorithm developed by F. G{\\l}och, D.E. K{\\k e}dzierski, P. Kraso{\\'n} [\nAlgorithms for determination of \\tm module structures on some extension groups\n, arXiv:2408.08207] and the methods of the work of D.E. K{\\k e}dzierski and P.\nKraso{\\'n} [On $\\Ext^1$ for Drinfeld modules, Journal of Number Theory 256\n(2024) 97-135]. We also give a counterexample to the Weil-Barsotti formula if\nthe nilpotent matrix $N_{\\Phi}$ is non-zero.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weil-Barsotti formula for $\\\\mathbf{T}$-modules\",\"authors\":\"Dawid E. Kędzierski, Piotr Krasoń\",\"doi\":\"arxiv-2409.04029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the work of M. A. Papanikolas and N. Ramachandran [A Weil-Barsotti formula\\nfor Drinfeld modules, Journal of Number Theory 98, (2003), 407-431] the\\nWeil-Barsotti formula for the function field case concerning\\n$\\\\Ext_{\\\\tau}^1(E,C)$ where $E$ is a Drinfeld module and $C$ is the Carlitz\\nmodule was proved. We generalize this formula to the case where $E$ is a\\nstrictly pure \\\\tm module $\\\\Phi$ with the zero nilpotent matrix $N_\\\\Phi.$ For\\nsuch a \\\\tm module $\\\\Phi$ we explicitly compute its dual \\\\tm module\\n${\\\\Phi}^{\\\\vee}$ as well as its double dual ${\\\\Phi}^{{\\\\vee}{\\\\vee}}.$ This\\ncomputation is done in a a subtle way by combination of the \\\\tm reduction\\nalgorithm developed by F. G{\\\\l}och, D.E. K{\\\\k e}dzierski, P. Kraso{\\\\'n} [\\nAlgorithms for determination of \\\\tm module structures on some extension groups\\n, arXiv:2408.08207] and the methods of the work of D.E. K{\\\\k e}dzierski and P.\\nKraso{\\\\'n} [On $\\\\Ext^1$ for Drinfeld modules, Journal of Number Theory 256\\n(2024) 97-135]. We also give a counterexample to the Weil-Barsotti formula if\\nthe nilpotent matrix $N_{\\\\Phi}$ is non-zero.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在 M. A. Papanikolas 和 N. Ramachandran 的工作[A Weil-Barsotti formulafor Drinfeld modules, Journal of Number Theory 98, (2003), 407-431]中,证明了关于$Ext_\{tau}^1(E,C)$(其中$E$是德林菲尔德模块,$C$是卡利茨模块)的函数场情况的魏尔-巴索提公式。我们把这个公式推广到 $E$ 是严格纯粹的 \tm 模块 $Phi$ 与零零势矩阵 $N_\Phi 的情况。对于这样的 \tm 模块 $Phi$ 我们明确地计算它的对偶 \tm 模块 ${Phi}^{\vee}$ 以及它的双重对偶 ${Phi}^{\vee}{\vee}}.这种计算是通过结合 F. G{\l}och, D.E. K{k e}dzierski, P. Kraso{'n} 开发的 \tm 还原算法以一种微妙的方式完成的。[一些扩展群上的\tm 模块结构的确定算法,arXiv:2408.08207] 以及 D. E. K{k e}dzierski 和 P. Kraso{\'n} 的工作方法[On $\Ext^1$ for Drinfeld modules, Journal of Number Theory 256(2024) 97-135].如果无穷矩阵 $N_{\Phi}$ 非零,我们还给出了 Weil-Barsotti 公式的一个反例。
In the work of M. A. Papanikolas and N. Ramachandran [A Weil-Barsotti formula
for Drinfeld modules, Journal of Number Theory 98, (2003), 407-431] the
Weil-Barsotti formula for the function field case concerning
$\Ext_{\tau}^1(E,C)$ where $E$ is a Drinfeld module and $C$ is the Carlitz
module was proved. We generalize this formula to the case where $E$ is a
strictly pure \tm module $\Phi$ with the zero nilpotent matrix $N_\Phi.$ For
such a \tm module $\Phi$ we explicitly compute its dual \tm module
${\Phi}^{\vee}$ as well as its double dual ${\Phi}^{{\vee}{\vee}}.$ This
computation is done in a a subtle way by combination of the \tm reduction
algorithm developed by F. G{\l}och, D.E. K{\k e}dzierski, P. Kraso{\'n} [
Algorithms for determination of \tm module structures on some extension groups
, arXiv:2408.08207] and the methods of the work of D.E. K{\k e}dzierski and P.
Kraso{\'n} [On $\Ext^1$ for Drinfeld modules, Journal of Number Theory 256
(2024) 97-135]. We also give a counterexample to the Weil-Barsotti formula if
the nilpotent matrix $N_{\Phi}$ is non-zero.