{"title":"阿佩里数以 $p^3$ 为模数的同余式","authors":"Zhi-Hong Sun","doi":"arxiv-2409.06544","DOIUrl":null,"url":null,"abstract":"Let $\\{A'_n\\}$ be the Ap\\'ery numbers given by $A'_n=\\sum_{k=0}^n\\binom\nnk^2\\binom{n+k}k.$ For any prime $p\\equiv 3\\pmod 4$ we show that\n$A'_{\\frac{p-1}2}\\equiv \\frac{p^2}3\\binom{\\frac{p-3}2}{\\frac{p-3}4}^{-2}\\pmod\n{p^3}$. Let $\\{t_n\\}$ be given by $$t_0=1,\\ t_1=5\\quad\\hbox{and}\\quad\nt_{n+1}=(8n^2+12n+5)t_n-4n^2(2n+1)^2t_{n-1}\\ (n\\ge 1).$$ We also obtain the\ncongruences for $t_p\\pmod {p^3},\\ t_{p-1}\\pmod {p^2}$ and $t_{\\frac{p-1}2}\\pmod\n{p^2}$, where $p$ is an odd prime.","PeriodicalId":501064,"journal":{"name":"arXiv - MATH - Number Theory","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Congruences for the Apéry numbers modulo $p^3$\",\"authors\":\"Zhi-Hong Sun\",\"doi\":\"arxiv-2409.06544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\{A'_n\\\\}$ be the Ap\\\\'ery numbers given by $A'_n=\\\\sum_{k=0}^n\\\\binom\\nnk^2\\\\binom{n+k}k.$ For any prime $p\\\\equiv 3\\\\pmod 4$ we show that\\n$A'_{\\\\frac{p-1}2}\\\\equiv \\\\frac{p^2}3\\\\binom{\\\\frac{p-3}2}{\\\\frac{p-3}4}^{-2}\\\\pmod\\n{p^3}$. Let $\\\\{t_n\\\\}$ be given by $$t_0=1,\\\\ t_1=5\\\\quad\\\\hbox{and}\\\\quad\\nt_{n+1}=(8n^2+12n+5)t_n-4n^2(2n+1)^2t_{n-1}\\\\ (n\\\\ge 1).$$ We also obtain the\\ncongruences for $t_p\\\\pmod {p^3},\\\\ t_{p-1}\\\\pmod {p^2}$ and $t_{\\\\frac{p-1}2}\\\\pmod\\n{p^2}$, where $p$ is an odd prime.\",\"PeriodicalId\":501064,\"journal\":{\"name\":\"arXiv - MATH - Number Theory\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Let $\{A'_n\}$ be the Ap\'ery numbers given by $A'_n=\sum_{k=0}^n\binom
nk^2\binom{n+k}k.$ For any prime $p\equiv 3\pmod 4$ we show that
$A'_{\frac{p-1}2}\equiv \frac{p^2}3\binom{\frac{p-3}2}{\frac{p-3}4}^{-2}\pmod
{p^3}$. Let $\{t_n\}$ be given by $$t_0=1,\ t_1=5\quad\hbox{and}\quad
t_{n+1}=(8n^2+12n+5)t_n-4n^2(2n+1)^2t_{n-1}\ (n\ge 1).$$ We also obtain the
congruences for $t_p\pmod {p^3},\ t_{p-1}\pmod {p^2}$ and $t_{\frac{p-1}2}\pmod
{p^2}$, where $p$ is an odd prime.