{"title":"硬质弹丸冲击下的钢筋混凝土结构:抗穿透性和抗穿孔性","authors":"Pascal Distler, Lars Heibges, Hamid Sadegh‐Azar","doi":"10.1002/suco.202300143","DOIUrl":null,"url":null,"abstract":"Reinforced concrete (RC) structures are mainly designed to withstand both static and dynamic loads. However, due to the highly nonlinear behavior of RC structures subjected to extreme dynamic loads, these structures have a very complex damage behavior under dynamic impact loading. In fact, current existing methods for damage‐simulation and prediction are generally based on either empirical data, simplified mechanical approaches or complex numerical simulations mainly using the finite element method. In this regard, empirical and semi‐empirical models can be considered to calculate the load‐bearing capacity in a simplified way with only a few input parameters. Hence, using current experimental test data, this paper aims to analyze and assess existing empirical and semi‐analytical approaches that are established in standards and guidelines. Accordingly, a functional relationship in terms of an impact factor is found. Based on the obtained results, different approaches are also developed to describe the resistance to projectile penetration of RC structures as well as the force interaction between projectile and RC structures.","PeriodicalId":21988,"journal":{"name":"Structural Concrete","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforced concrete structures under hard projectile impact: penetration and perforation resistance\",\"authors\":\"Pascal Distler, Lars Heibges, Hamid Sadegh‐Azar\",\"doi\":\"10.1002/suco.202300143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reinforced concrete (RC) structures are mainly designed to withstand both static and dynamic loads. However, due to the highly nonlinear behavior of RC structures subjected to extreme dynamic loads, these structures have a very complex damage behavior under dynamic impact loading. In fact, current existing methods for damage‐simulation and prediction are generally based on either empirical data, simplified mechanical approaches or complex numerical simulations mainly using the finite element method. In this regard, empirical and semi‐empirical models can be considered to calculate the load‐bearing capacity in a simplified way with only a few input parameters. Hence, using current experimental test data, this paper aims to analyze and assess existing empirical and semi‐analytical approaches that are established in standards and guidelines. Accordingly, a functional relationship in terms of an impact factor is found. Based on the obtained results, different approaches are also developed to describe the resistance to projectile penetration of RC structures as well as the force interaction between projectile and RC structures.\",\"PeriodicalId\":21988,\"journal\":{\"name\":\"Structural Concrete\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Concrete\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/suco.202300143\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Concrete","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/suco.202300143","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Reinforced concrete structures under hard projectile impact: penetration and perforation resistance
Reinforced concrete (RC) structures are mainly designed to withstand both static and dynamic loads. However, due to the highly nonlinear behavior of RC structures subjected to extreme dynamic loads, these structures have a very complex damage behavior under dynamic impact loading. In fact, current existing methods for damage‐simulation and prediction are generally based on either empirical data, simplified mechanical approaches or complex numerical simulations mainly using the finite element method. In this regard, empirical and semi‐empirical models can be considered to calculate the load‐bearing capacity in a simplified way with only a few input parameters. Hence, using current experimental test data, this paper aims to analyze and assess existing empirical and semi‐analytical approaches that are established in standards and guidelines. Accordingly, a functional relationship in terms of an impact factor is found. Based on the obtained results, different approaches are also developed to describe the resistance to projectile penetration of RC structures as well as the force interaction between projectile and RC structures.
期刊介绍:
Structural Concrete, the official journal of the fib, provides conceptual and procedural guidance in the field of concrete construction, and features peer-reviewed papers, keynote research and industry news covering all aspects of the design, construction, performance in service and demolition of concrete structures.
Main topics:
design, construction, performance in service, conservation (assessment, maintenance, strengthening) and demolition of concrete structures
research about the behaviour of concrete structures
development of design methods
fib Model Code
sustainability of concrete structures.