{"title":"利用特征优化方法和树状分类器分析客户流失情况","authors":"Fatemeh Ehsani, Monireh Hosseini","doi":"10.1108/jsm-04-2024-0156","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>As internet banking service marketing platforms continue to advance, customers exhibit distinct behaviors. Given the extensive array of options and minimal barriers to switching to competitors, the concept of customer churn behavior has emerged as a subject of considerable debate. This study aims to delineate the scope of feature optimization methods for elucidating customer churn behavior within the context of internet banking service marketing. To achieve this goal, the author aims to predict the attrition and migration of customers who use internet banking services using tree-based classifiers.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The author used various feature optimization methods in tree-based classifiers to predict customer churn behavior using transaction data from customers who use internet banking services. First, the authors conducted feature reduction to eliminate ineffective features and project the data set onto a lower-dimensional space. Next, the author used Recursive Feature Elimination with Cross-Validation (RFECV) to extract the most practical features. Then, the author applied feature importance to assign a score to each input feature. Following this, the author selected C5.0 Decision Tree, Random Forest, XGBoost, AdaBoost, CatBoost and LightGBM as the six tree-based classifier structures.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>This study acclaimed that transaction data is a reliable resource for elucidating customer churn behavior within the context of internet banking service marketing. Experimental findings highlight the operational benefits and enhanced customer retention afforded by implementing feature optimization and leveraging a variety of tree-based classifiers. The results indicate the significance of feature reduction, feature selection and feature importance as the three feature optimization methods in comprehending customer churn prediction. This study demonstrated that feature optimization can improve this prediction by increasing the accuracy and precision of tree-based classifiers and decreasing their error rates.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This research aims to enhance the understanding of customer behavior on internet banking service platforms by predicting churn intentions. This study demonstrates how feature optimization methods influence customer churn prediction performance. This approach included feature reduction, feature selection and assessing feature importance to optimize transaction data analysis. Additionally, the author performed feature optimization within tree-based classifiers to improve performance. The novelty of this approach lies in combining feature optimization methods with tree-based classifiers to effectively capture and articulate customer churn experience in internet banking service marketing.</p><!--/ Abstract__block -->","PeriodicalId":48294,"journal":{"name":"Journal of Services Marketing","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Customer churn analysis using feature optimization methods and tree-based classifiers\",\"authors\":\"Fatemeh Ehsani, Monireh Hosseini\",\"doi\":\"10.1108/jsm-04-2024-0156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>As internet banking service marketing platforms continue to advance, customers exhibit distinct behaviors. Given the extensive array of options and minimal barriers to switching to competitors, the concept of customer churn behavior has emerged as a subject of considerable debate. This study aims to delineate the scope of feature optimization methods for elucidating customer churn behavior within the context of internet banking service marketing. To achieve this goal, the author aims to predict the attrition and migration of customers who use internet banking services using tree-based classifiers.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>The author used various feature optimization methods in tree-based classifiers to predict customer churn behavior using transaction data from customers who use internet banking services. First, the authors conducted feature reduction to eliminate ineffective features and project the data set onto a lower-dimensional space. Next, the author used Recursive Feature Elimination with Cross-Validation (RFECV) to extract the most practical features. Then, the author applied feature importance to assign a score to each input feature. Following this, the author selected C5.0 Decision Tree, Random Forest, XGBoost, AdaBoost, CatBoost and LightGBM as the six tree-based classifier structures.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>This study acclaimed that transaction data is a reliable resource for elucidating customer churn behavior within the context of internet banking service marketing. Experimental findings highlight the operational benefits and enhanced customer retention afforded by implementing feature optimization and leveraging a variety of tree-based classifiers. The results indicate the significance of feature reduction, feature selection and feature importance as the three feature optimization methods in comprehending customer churn prediction. This study demonstrated that feature optimization can improve this prediction by increasing the accuracy and precision of tree-based classifiers and decreasing their error rates.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>This research aims to enhance the understanding of customer behavior on internet banking service platforms by predicting churn intentions. This study demonstrates how feature optimization methods influence customer churn prediction performance. This approach included feature reduction, feature selection and assessing feature importance to optimize transaction data analysis. Additionally, the author performed feature optimization within tree-based classifiers to improve performance. The novelty of this approach lies in combining feature optimization methods with tree-based classifiers to effectively capture and articulate customer churn experience in internet banking service marketing.</p><!--/ Abstract__block -->\",\"PeriodicalId\":48294,\"journal\":{\"name\":\"Journal of Services Marketing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Services Marketing\",\"FirstCategoryId\":\"91\",\"ListUrlMain\":\"https://doi.org/10.1108/jsm-04-2024-0156\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Services Marketing","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1108/jsm-04-2024-0156","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS","Score":null,"Total":0}
Customer churn analysis using feature optimization methods and tree-based classifiers
Purpose
As internet banking service marketing platforms continue to advance, customers exhibit distinct behaviors. Given the extensive array of options and minimal barriers to switching to competitors, the concept of customer churn behavior has emerged as a subject of considerable debate. This study aims to delineate the scope of feature optimization methods for elucidating customer churn behavior within the context of internet banking service marketing. To achieve this goal, the author aims to predict the attrition and migration of customers who use internet banking services using tree-based classifiers.
Design/methodology/approach
The author used various feature optimization methods in tree-based classifiers to predict customer churn behavior using transaction data from customers who use internet banking services. First, the authors conducted feature reduction to eliminate ineffective features and project the data set onto a lower-dimensional space. Next, the author used Recursive Feature Elimination with Cross-Validation (RFECV) to extract the most practical features. Then, the author applied feature importance to assign a score to each input feature. Following this, the author selected C5.0 Decision Tree, Random Forest, XGBoost, AdaBoost, CatBoost and LightGBM as the six tree-based classifier structures.
Findings
This study acclaimed that transaction data is a reliable resource for elucidating customer churn behavior within the context of internet banking service marketing. Experimental findings highlight the operational benefits and enhanced customer retention afforded by implementing feature optimization and leveraging a variety of tree-based classifiers. The results indicate the significance of feature reduction, feature selection and feature importance as the three feature optimization methods in comprehending customer churn prediction. This study demonstrated that feature optimization can improve this prediction by increasing the accuracy and precision of tree-based classifiers and decreasing their error rates.
Originality/value
This research aims to enhance the understanding of customer behavior on internet banking service platforms by predicting churn intentions. This study demonstrates how feature optimization methods influence customer churn prediction performance. This approach included feature reduction, feature selection and assessing feature importance to optimize transaction data analysis. Additionally, the author performed feature optimization within tree-based classifiers to improve performance. The novelty of this approach lies in combining feature optimization methods with tree-based classifiers to effectively capture and articulate customer churn experience in internet banking service marketing.
期刊介绍:
■Customer policy and service ■Marketing of services ■Marketing planning ■Service marketing abroad ■Service quality Capturing and retaining customers in a service industry is a vastly different activity to its product-based counterpart. The fickle nature of today"s consumer is a vital factor in understanding the factors which determine successful holding of market share - and the intense competition within the sector means practitioners must keep pace with new developments if they are to outwit competitors and develop customer loyalty.