Fa‐xing Ding, Xin‐yu Huang, Chen‐jie Gong, Zheng‐bo Pi
{"title":"弯曲-扭转耦合作用下圆形混凝土填充钢管柱的力学性能研究","authors":"Fa‐xing Ding, Xin‐yu Huang, Chen‐jie Gong, Zheng‐bo Pi","doi":"10.1002/suco.202400128","DOIUrl":null,"url":null,"abstract":"Under the influence of wind and horizontal seismic forces, structures such as piers in curved beam bridges, main arches of steel tube concrete arch bridges, and frame columns may experience combined bending‐torsion stress states, affecting the safe usage of the structure. To investigate the mechanical performance of circular concrete‐filled steel tube(CFST) columns under bending‐torsional coupling, a three‐dimensional solid‐shell finite element model of circular concrete‐filled steel tube columns under various bending and torsion ratios (<jats:italic>k</jats:italic>) was established using ABAQUS software, and validated with existing experiments on such columns under bending‐torsional loading. Parametric analysis was conducted to explore the trends of interface slip and the restraining effect in circular concrete‐filled steel tube columns under different bending and torsion ratios, analyzing the impact of parameters such as the yield strength of steel, concrete strength, steel content in the cross‐section, and shear–span ratio on the combined bearing capacity. The results of the parametric analysis show that: (1) with the increase of <jats:italic>k</jats:italic>, the relative slip at the interface between the core concrete and the outer steel tube first increases and then decreases, with interface slip leading to a reduction in the load‐bearing capacity; (2) the relative slip at the interface between the core concrete and the outer steel tube first increases and then decreases, with interface slip leading to a reduction in the load‐bearing capacity; (3) with the increase of <jats:italic>k</jats:italic>, the circumferential and axial stresses in the steel tube surface of the circular concrete‐filled steel tube columns increase, while the shear stress decreases, leading to a transition in the failure mode of the columns from combined bending‐torsional failure to bending‐shear failure. Based on these findings, a practical calculation formula for the bending‐torsional combined bearing capacity of circular concrete‐filled steel tube columns is proposed, offering high calculation accuracy and serving as a reference for the design of such components.","PeriodicalId":21988,"journal":{"name":"Structural Concrete","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the mechanical performance of circular concrete‐filled steel tube columns under bending‐torsional coupling\",\"authors\":\"Fa‐xing Ding, Xin‐yu Huang, Chen‐jie Gong, Zheng‐bo Pi\",\"doi\":\"10.1002/suco.202400128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Under the influence of wind and horizontal seismic forces, structures such as piers in curved beam bridges, main arches of steel tube concrete arch bridges, and frame columns may experience combined bending‐torsion stress states, affecting the safe usage of the structure. To investigate the mechanical performance of circular concrete‐filled steel tube(CFST) columns under bending‐torsional coupling, a three‐dimensional solid‐shell finite element model of circular concrete‐filled steel tube columns under various bending and torsion ratios (<jats:italic>k</jats:italic>) was established using ABAQUS software, and validated with existing experiments on such columns under bending‐torsional loading. Parametric analysis was conducted to explore the trends of interface slip and the restraining effect in circular concrete‐filled steel tube columns under different bending and torsion ratios, analyzing the impact of parameters such as the yield strength of steel, concrete strength, steel content in the cross‐section, and shear–span ratio on the combined bearing capacity. The results of the parametric analysis show that: (1) with the increase of <jats:italic>k</jats:italic>, the relative slip at the interface between the core concrete and the outer steel tube first increases and then decreases, with interface slip leading to a reduction in the load‐bearing capacity; (2) the relative slip at the interface between the core concrete and the outer steel tube first increases and then decreases, with interface slip leading to a reduction in the load‐bearing capacity; (3) with the increase of <jats:italic>k</jats:italic>, the circumferential and axial stresses in the steel tube surface of the circular concrete‐filled steel tube columns increase, while the shear stress decreases, leading to a transition in the failure mode of the columns from combined bending‐torsional failure to bending‐shear failure. Based on these findings, a practical calculation formula for the bending‐torsional combined bearing capacity of circular concrete‐filled steel tube columns is proposed, offering high calculation accuracy and serving as a reference for the design of such components.\",\"PeriodicalId\":21988,\"journal\":{\"name\":\"Structural Concrete\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Concrete\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/suco.202400128\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Concrete","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/suco.202400128","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
在风力和水平地震力的作用下,曲线梁桥的桥墩、钢管混凝土拱桥的主拱以及框架柱等结构会出现弯扭组合应力状态,影响结构的安全使用。为研究弯扭耦合作用下圆形混凝土填充钢管(CFST)柱的力学性能,利用 ABAQUS 软件建立了不同弯扭比(k)下圆形混凝土填充钢管柱的三维实体-壳体有限元模型,并与现有弯扭荷载下此类柱的实验进行了验证。通过参数分析,探讨了不同弯扭比下圆形混凝土填充钢管柱的界面滑移趋势和约束效应,分析了钢材屈服强度、混凝土强度、截面含钢量和剪跨比等参数对综合承载力的影响。参数分析结果表明(1) 随着 k 的增大,核心混凝土与外层钢管之间界面的相对滑移先增大后减小,界面滑移导致承载能力降低;(2) 核心混凝土与外层钢管之间界面的相对滑移先增大后减小,界面滑移导致承载能力降低;(3) 随着 k 的增大,圆形混凝土填充钢管柱钢管表面的圆周应力和轴向应力增大,而剪应力减小,导致钢管柱的破坏模式从弯曲-扭转联合破坏过渡到弯曲-剪切破坏。基于这些发现,提出了一种实用的圆形混凝土填充钢管柱弯曲扭转组合承载力计算公式,具有较高的计算精度,可作为此类构件设计的参考。
Research on the mechanical performance of circular concrete‐filled steel tube columns under bending‐torsional coupling
Under the influence of wind and horizontal seismic forces, structures such as piers in curved beam bridges, main arches of steel tube concrete arch bridges, and frame columns may experience combined bending‐torsion stress states, affecting the safe usage of the structure. To investigate the mechanical performance of circular concrete‐filled steel tube(CFST) columns under bending‐torsional coupling, a three‐dimensional solid‐shell finite element model of circular concrete‐filled steel tube columns under various bending and torsion ratios (k) was established using ABAQUS software, and validated with existing experiments on such columns under bending‐torsional loading. Parametric analysis was conducted to explore the trends of interface slip and the restraining effect in circular concrete‐filled steel tube columns under different bending and torsion ratios, analyzing the impact of parameters such as the yield strength of steel, concrete strength, steel content in the cross‐section, and shear–span ratio on the combined bearing capacity. The results of the parametric analysis show that: (1) with the increase of k, the relative slip at the interface between the core concrete and the outer steel tube first increases and then decreases, with interface slip leading to a reduction in the load‐bearing capacity; (2) the relative slip at the interface between the core concrete and the outer steel tube first increases and then decreases, with interface slip leading to a reduction in the load‐bearing capacity; (3) with the increase of k, the circumferential and axial stresses in the steel tube surface of the circular concrete‐filled steel tube columns increase, while the shear stress decreases, leading to a transition in the failure mode of the columns from combined bending‐torsional failure to bending‐shear failure. Based on these findings, a practical calculation formula for the bending‐torsional combined bearing capacity of circular concrete‐filled steel tube columns is proposed, offering high calculation accuracy and serving as a reference for the design of such components.
期刊介绍:
Structural Concrete, the official journal of the fib, provides conceptual and procedural guidance in the field of concrete construction, and features peer-reviewed papers, keynote research and industry news covering all aspects of the design, construction, performance in service and demolition of concrete structures.
Main topics:
design, construction, performance in service, conservation (assessment, maintenance, strengthening) and demolition of concrete structures
research about the behaviour of concrete structures
development of design methods
fib Model Code
sustainability of concrete structures.