利用机器学习快速估算极端质量比检验参数

Bo Liang, Hong Guo, Tianyu Zhao, He wang, Herik Evangelinelis, Yuxiang Xu, Chang liu, Manjia Liang, Xiaotong Wei, Yong Yuan, Peng Xu, Minghui Du, Wei-Liang Qian, Ziren Luo
{"title":"利用机器学习快速估算极端质量比检验参数","authors":"Bo Liang, Hong Guo, Tianyu Zhao, He wang, Herik Evangelinelis, Yuxiang Xu, Chang liu, Manjia Liang, Xiaotong Wei, Yong Yuan, Peng Xu, Minghui Du, Wei-Liang Qian, Ziren Luo","doi":"arxiv-2409.07957","DOIUrl":null,"url":null,"abstract":"Extreme-mass-ratio inspiral (EMRI) signals pose significant challenges in\ngravitational wave (GW) astronomy owing to their low-frequency nature and\nhighly complex waveforms, which occupy a high-dimensional parameter space with\nnumerous variables. Given their extended inspiral timescales and low\nsignal-to-noise ratios, EMRI signals warrant prolonged observation periods.\nParameter estimation becomes particularly challenging due to non-local\nparameter degeneracies, arising from multiple local maxima, as well as flat\nregions and ridges inherent in the likelihood function. These factors lead to\nexceptionally high time complexity for parameter analysis while employing\ntraditional matched filtering and random sampling methods. To address these\nchallenges, the present study applies machine learning to Bayesian posterior\nestimation of EMRI signals, leveraging the recently developed flow matching\ntechnique based on ODE neural networks. Our approach demonstrates computational\nefficiency several orders of magnitude faster than the traditional Markov Chain\nMonte Carlo (MCMC) methods, while preserving the unbiasedness of parameter\nestimation. We show that machine learning technology has the potential to\nefficiently handle the vast parameter space, involving up to seventeen\nparameters, associated with EMRI signals. Furthermore, to our knowledge, this\nis the first instance of applying machine learning, specifically the Continuous\nNormalizing Flows (CNFs), to EMRI signal analysis. Our findings highlight the\npromising potential of machine learning in EMRI waveform analysis, offering new\nperspectives for the advancement of space-based GW detection and GW astronomy.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid Parameter Estimation for Extreme Mass Ratio Inspirals Using Machine Learning\",\"authors\":\"Bo Liang, Hong Guo, Tianyu Zhao, He wang, Herik Evangelinelis, Yuxiang Xu, Chang liu, Manjia Liang, Xiaotong Wei, Yong Yuan, Peng Xu, Minghui Du, Wei-Liang Qian, Ziren Luo\",\"doi\":\"arxiv-2409.07957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Extreme-mass-ratio inspiral (EMRI) signals pose significant challenges in\\ngravitational wave (GW) astronomy owing to their low-frequency nature and\\nhighly complex waveforms, which occupy a high-dimensional parameter space with\\nnumerous variables. Given their extended inspiral timescales and low\\nsignal-to-noise ratios, EMRI signals warrant prolonged observation periods.\\nParameter estimation becomes particularly challenging due to non-local\\nparameter degeneracies, arising from multiple local maxima, as well as flat\\nregions and ridges inherent in the likelihood function. These factors lead to\\nexceptionally high time complexity for parameter analysis while employing\\ntraditional matched filtering and random sampling methods. To address these\\nchallenges, the present study applies machine learning to Bayesian posterior\\nestimation of EMRI signals, leveraging the recently developed flow matching\\ntechnique based on ODE neural networks. Our approach demonstrates computational\\nefficiency several orders of magnitude faster than the traditional Markov Chain\\nMonte Carlo (MCMC) methods, while preserving the unbiasedness of parameter\\nestimation. We show that machine learning technology has the potential to\\nefficiently handle the vast parameter space, involving up to seventeen\\nparameters, associated with EMRI signals. Furthermore, to our knowledge, this\\nis the first instance of applying machine learning, specifically the Continuous\\nNormalizing Flows (CNFs), to EMRI signal analysis. Our findings highlight the\\npromising potential of machine learning in EMRI waveform analysis, offering new\\nperspectives for the advancement of space-based GW detection and GW astronomy.\",\"PeriodicalId\":501369,\"journal\":{\"name\":\"arXiv - PHYS - Computational Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

极端质量比吸气(EMRI)信号对引力波(GW)天文学构成了重大挑战,因为它们的频率低,波形非常复杂,占据了一个有无数变量的高维参数空间。由于多个局部最大值产生的非局部参数退化,以及似然函数中固有的平坦区域和山脊,参数估计变得特别具有挑战性。这些因素导致采用传统匹配滤波和随机抽样方法进行参数分析的时间复杂度异常高。为了应对这些挑战,本研究利用最近开发的基于 ODE 神经网络的流量匹配技术,将机器学习应用于 EMRI 信号的贝叶斯后验估计。与传统的马尔可夫链蒙特卡洛(MCMC)方法相比,我们的方法在保持参数估计无偏性的同时,计算效率快了几个数量级。我们的研究表明,机器学习技术有潜力高效处理与 EMRI 信号相关的庞大参数空间,其中涉及多达十七个参数。此外,据我们所知,这是首次将机器学习,特别是连续归一化流(CNFs)应用于 EMRI 信号分析。我们的研究结果凸显了机器学习在 EMRI 波形分析中的巨大潜力,为天基全球风暴探测和全球风暴天文学的发展提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid Parameter Estimation for Extreme Mass Ratio Inspirals Using Machine Learning
Extreme-mass-ratio inspiral (EMRI) signals pose significant challenges in gravitational wave (GW) astronomy owing to their low-frequency nature and highly complex waveforms, which occupy a high-dimensional parameter space with numerous variables. Given their extended inspiral timescales and low signal-to-noise ratios, EMRI signals warrant prolonged observation periods. Parameter estimation becomes particularly challenging due to non-local parameter degeneracies, arising from multiple local maxima, as well as flat regions and ridges inherent in the likelihood function. These factors lead to exceptionally high time complexity for parameter analysis while employing traditional matched filtering and random sampling methods. To address these challenges, the present study applies machine learning to Bayesian posterior estimation of EMRI signals, leveraging the recently developed flow matching technique based on ODE neural networks. Our approach demonstrates computational efficiency several orders of magnitude faster than the traditional Markov Chain Monte Carlo (MCMC) methods, while preserving the unbiasedness of parameter estimation. We show that machine learning technology has the potential to efficiently handle the vast parameter space, involving up to seventeen parameters, associated with EMRI signals. Furthermore, to our knowledge, this is the first instance of applying machine learning, specifically the Continuous Normalizing Flows (CNFs), to EMRI signal analysis. Our findings highlight the promising potential of machine learning in EMRI waveform analysis, offering new perspectives for the advancement of space-based GW detection and GW astronomy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing a minimal Landau theory to stabilize desired quasicrystals Uncovering liquid-substrate fluctuation effects on crystal growth and disordered hyperuniformity of two-dimensional materials Exascale Quantum Mechanical Simulations: Navigating the Shifting Sands of Hardware and Software Influence of dislocations in multilayer graphene stacks: A phase field crystal study AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1