人工智能加速发现高临界温度超导体

Xiao-Qi Han, Zhenfeng Ouyang, Peng-Jie Guo, Hao Sun, Ze-Feng Gao, Zhong-Yi Lu
{"title":"人工智能加速发现高临界温度超导体","authors":"Xiao-Qi Han, Zhenfeng Ouyang, Peng-Jie Guo, Hao Sun, Ze-Feng Gao, Zhong-Yi Lu","doi":"arxiv-2409.08065","DOIUrl":null,"url":null,"abstract":"The discovery of new superconducting materials, particularly those exhibiting\nhigh critical temperature ($T_c$), has been a vibrant area of study within the\nfield of condensed matter physics. Conventional approaches primarily rely on\nphysical intuition to search for potential superconductors within the existing\ndatabases. However, the known materials only scratch the surface of the\nextensive array of possibilities within the realm of materials. Here, we\ndevelop an AI search engine that integrates deep model pre-training and\nfine-tuning techniques, diffusion models, and physics-based approaches (e.g.,\nfirst-principles electronic structure calculation) for discovery of high-$T_c$\nsuperconductors. Utilizing this AI search engine, we have obtained 74\ndynamically stable materials with critical temperatures predicted by the AI\nmodel to be $T_c \\geq$ 15 K based on a very small set of samples. Notably,\nthese materials are not contained in any existing dataset. Furthermore, we\nanalyze trends in our dataset and individual materials including B$_4$CN$_3$\nand B$_5$CN$_2$ whose $T_c$s are 24.08 K and 15.93 K, respectively. We\ndemonstrate that AI technique can discover a set of new high-$T_c$\nsuperconductors, outline its potential for accelerating discovery of the\nmaterials with targeted properties.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"29 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-accelerated discovery of high critical temperature superconductors\",\"authors\":\"Xiao-Qi Han, Zhenfeng Ouyang, Peng-Jie Guo, Hao Sun, Ze-Feng Gao, Zhong-Yi Lu\",\"doi\":\"arxiv-2409.08065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discovery of new superconducting materials, particularly those exhibiting\\nhigh critical temperature ($T_c$), has been a vibrant area of study within the\\nfield of condensed matter physics. Conventional approaches primarily rely on\\nphysical intuition to search for potential superconductors within the existing\\ndatabases. However, the known materials only scratch the surface of the\\nextensive array of possibilities within the realm of materials. Here, we\\ndevelop an AI search engine that integrates deep model pre-training and\\nfine-tuning techniques, diffusion models, and physics-based approaches (e.g.,\\nfirst-principles electronic structure calculation) for discovery of high-$T_c$\\nsuperconductors. Utilizing this AI search engine, we have obtained 74\\ndynamically stable materials with critical temperatures predicted by the AI\\nmodel to be $T_c \\\\geq$ 15 K based on a very small set of samples. Notably,\\nthese materials are not contained in any existing dataset. Furthermore, we\\nanalyze trends in our dataset and individual materials including B$_4$CN$_3$\\nand B$_5$CN$_2$ whose $T_c$s are 24.08 K and 15.93 K, respectively. We\\ndemonstrate that AI technique can discover a set of new high-$T_c$\\nsuperconductors, outline its potential for accelerating discovery of the\\nmaterials with targeted properties.\",\"PeriodicalId\":501369,\"journal\":{\"name\":\"arXiv - PHYS - Computational Physics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

发现新的超导材料,特别是那些显示出高临界温度($T_c$)的材料,一直是凝聚态物理学领域一个充满活力的研究领域。传统方法主要依靠物理直觉在现有数据库中寻找潜在的超导体。然而,已知的材料只是材料领域中大量可能性的表面。在这里,我们开发了一种人工智能搜索引擎,它集成了深度模型预训练和微调技术、扩散模型和基于物理学的方法(如第一原理电子结构计算),用于发现高$T_c$超导体。利用这个人工智能搜索引擎,我们在极少量样品的基础上获得了 74 种动力学上稳定的材料,人工智能模型预测其临界温度为 $T_c \geq$ 15 K。值得注意的是,这些材料并不包含在任何现有的数据集中。此外,我们分析了我们的数据集和个别材料的趋势,包括 B$_4$CN$_3$ 和 B$_5$CN$_2$,它们的 $T_c$ 分别为 24.08 K 和 15.93 K。我们证明人工智能技术可以发现一系列新的高 T_c$ 超导物,并概述了它在加速发现具有目标特性的材料方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI-accelerated discovery of high critical temperature superconductors
The discovery of new superconducting materials, particularly those exhibiting high critical temperature ($T_c$), has been a vibrant area of study within the field of condensed matter physics. Conventional approaches primarily rely on physical intuition to search for potential superconductors within the existing databases. However, the known materials only scratch the surface of the extensive array of possibilities within the realm of materials. Here, we develop an AI search engine that integrates deep model pre-training and fine-tuning techniques, diffusion models, and physics-based approaches (e.g., first-principles electronic structure calculation) for discovery of high-$T_c$ superconductors. Utilizing this AI search engine, we have obtained 74 dynamically stable materials with critical temperatures predicted by the AI model to be $T_c \geq$ 15 K based on a very small set of samples. Notably, these materials are not contained in any existing dataset. Furthermore, we analyze trends in our dataset and individual materials including B$_4$CN$_3$ and B$_5$CN$_2$ whose $T_c$s are 24.08 K and 15.93 K, respectively. We demonstrate that AI technique can discover a set of new high-$T_c$ superconductors, outline its potential for accelerating discovery of the materials with targeted properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing a minimal Landau theory to stabilize desired quasicrystals Uncovering liquid-substrate fluctuation effects on crystal growth and disordered hyperuniformity of two-dimensional materials Exascale Quantum Mechanical Simulations: Navigating the Shifting Sands of Hardware and Software Influence of dislocations in multilayer graphene stacks: A phase field crystal study AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1