通过机器学习辅助提取非谐波力常量,将声子热导率预测速度提高一个数量级

Yagyank Srivastava, Ankit Jain
{"title":"通过机器学习辅助提取非谐波力常量,将声子热导率预测速度提高一个数量级","authors":"Yagyank Srivastava, Ankit Jain","doi":"arxiv-2409.00360","DOIUrl":null,"url":null,"abstract":"The calculation of material phonon thermal conductivity from density\nfunctional theory calculations requires computationally expensive evaluation of\nanharmonic interatomic force constants and has remained a computational\nbottleneck in the high-throughput discovery of materials. In this work, we\npresent a machine learning-assisted approach for the extraction of anharmonic\nforce constants through local learning of the potential energy surface. We\ndemonstrate our approach on a diverse collection of 220 ternary materials for\nwhich the total computational time for anharmonic force constants evaluation is\nreduced by more than an order of magnitude from 480,000 cpu-hours to less than\n12,000 cpu-hours while preserving the thermal conductivity prediction accuracy\nto within 10%. Our approach removes a major hurdle in computational thermal\nconductivity evaluation and will pave the way forward for the high-throughput\ndiscovery of materials.","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating Phonon Thermal Conductivity Prediction by an Order of Magnitude Through Machine Learning-Assisted Extraction of Anharmonic Force Constants\",\"authors\":\"Yagyank Srivastava, Ankit Jain\",\"doi\":\"arxiv-2409.00360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The calculation of material phonon thermal conductivity from density\\nfunctional theory calculations requires computationally expensive evaluation of\\nanharmonic interatomic force constants and has remained a computational\\nbottleneck in the high-throughput discovery of materials. In this work, we\\npresent a machine learning-assisted approach for the extraction of anharmonic\\nforce constants through local learning of the potential energy surface. We\\ndemonstrate our approach on a diverse collection of 220 ternary materials for\\nwhich the total computational time for anharmonic force constants evaluation is\\nreduced by more than an order of magnitude from 480,000 cpu-hours to less than\\n12,000 cpu-hours while preserving the thermal conductivity prediction accuracy\\nto within 10%. Our approach removes a major hurdle in computational thermal\\nconductivity evaluation and will pave the way forward for the high-throughput\\ndiscovery of materials.\",\"PeriodicalId\":501369,\"journal\":{\"name\":\"arXiv - PHYS - Computational Physics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从密度函数理论计算中计算材料声子热导率需要对谐波原子间力常量进行计算昂贵的评估,这一直是高通量材料发现过程中的计算瓶颈。在这项工作中,我们提出了一种机器学习辅助方法,通过对势能面的局部学习来提取谐波力常数。我们在 220 种不同的三元材料上演示了我们的方法,评估非谐波力常数的总计算时间从 480,000 cpu 小时减少到不到 12,000 cpu 小时,减少了一个数量级以上,同时保持了 10%以内的热导率预测精度。我们的方法消除了计算热导评估中的一大障碍,将为高通量材料发现铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerating Phonon Thermal Conductivity Prediction by an Order of Magnitude Through Machine Learning-Assisted Extraction of Anharmonic Force Constants
The calculation of material phonon thermal conductivity from density functional theory calculations requires computationally expensive evaluation of anharmonic interatomic force constants and has remained a computational bottleneck in the high-throughput discovery of materials. In this work, we present a machine learning-assisted approach for the extraction of anharmonic force constants through local learning of the potential energy surface. We demonstrate our approach on a diverse collection of 220 ternary materials for which the total computational time for anharmonic force constants evaluation is reduced by more than an order of magnitude from 480,000 cpu-hours to less than 12,000 cpu-hours while preserving the thermal conductivity prediction accuracy to within 10%. Our approach removes a major hurdle in computational thermal conductivity evaluation and will pave the way forward for the high-throughput discovery of materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing a minimal Landau theory to stabilize desired quasicrystals Uncovering liquid-substrate fluctuation effects on crystal growth and disordered hyperuniformity of two-dimensional materials Exascale Quantum Mechanical Simulations: Navigating the Shifting Sands of Hardware and Software Influence of dislocations in multilayer graphene stacks: A phase field crystal study AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1