μ介子自旋光谱学的自动化计算工作流程

Ifeanyi J. Onuorah, Miki Bonacci, Muhammad M. Isah, Marcello Mazzani, Roberto De Renzi, Giovanni Pizzi, Pietro Bonfa`
{"title":"μ介子自旋光谱学的自动化计算工作流程","authors":"Ifeanyi J. Onuorah, Miki Bonacci, Muhammad M. Isah, Marcello Mazzani, Roberto De Renzi, Giovanni Pizzi, Pietro Bonfa`","doi":"arxiv-2408.16722","DOIUrl":null,"url":null,"abstract":"Positive muon spin rotation and relaxation spectroscopy is a well established\nexperimental technique for studying materials. It provides a local probe that\ngenerally complements scattering techniques in the study of magnetic systems\nand represents a valuable alternative for materials that display strong\nincoherent scattering or neutron absorption. Computational methods can\neffectively quantify the microscopic interactions underlying the experimentally\nobserved signal, thus substantially boosting the predictive power of this\ntechnique. Here, we present an efficient set of algorithms and workflows\ndevoted to the automation of this task. In particular, we adopt the so-called\nDFT+{\\mu} procedure, where the system is characterised in the density\nfunctional theory (DFT) framework with the muon modeled as a hydrogen impurity.\nWe devise an automated strategy to obtain candidate muon stopping sites, their\ndipolar interaction with the nuclei, and hyperfine interactions with the\nelectronic ground state. We validate the implementation on well-studied\ncompounds, showing the effectiveness of our protocol in terms of accuracy and\nsimplicity of use","PeriodicalId":501369,"journal":{"name":"arXiv - PHYS - Computational Physics","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated computational workflows for muon spin spectroscopy\",\"authors\":\"Ifeanyi J. Onuorah, Miki Bonacci, Muhammad M. Isah, Marcello Mazzani, Roberto De Renzi, Giovanni Pizzi, Pietro Bonfa`\",\"doi\":\"arxiv-2408.16722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Positive muon spin rotation and relaxation spectroscopy is a well established\\nexperimental technique for studying materials. It provides a local probe that\\ngenerally complements scattering techniques in the study of magnetic systems\\nand represents a valuable alternative for materials that display strong\\nincoherent scattering or neutron absorption. Computational methods can\\neffectively quantify the microscopic interactions underlying the experimentally\\nobserved signal, thus substantially boosting the predictive power of this\\ntechnique. Here, we present an efficient set of algorithms and workflows\\ndevoted to the automation of this task. In particular, we adopt the so-called\\nDFT+{\\\\mu} procedure, where the system is characterised in the density\\nfunctional theory (DFT) framework with the muon modeled as a hydrogen impurity.\\nWe devise an automated strategy to obtain candidate muon stopping sites, their\\ndipolar interaction with the nuclei, and hyperfine interactions with the\\nelectronic ground state. We validate the implementation on well-studied\\ncompounds, showing the effectiveness of our protocol in terms of accuracy and\\nsimplicity of use\",\"PeriodicalId\":501369,\"journal\":{\"name\":\"arXiv - PHYS - Computational Physics\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Computational Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Computational Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

正μ介子自旋旋转和弛豫光谱学是一种成熟的材料研究实验技术。它提供了一种局部探针,在磁性系统的研究中通常与散射技术相辅相成,对于显示出强相干散射或中子吸收的材料来说是一种有价值的替代方法。计算方法可以有效地量化实验观察到的信号背后的微观相互作用,从而大大提高这种技术的预测能力。在这里,我们提出了一套高效的算法和工作流程,专门用于实现这项任务的自动化。特别是,我们采用了所谓的DFT+{\mu}程序,即在密度泛函理论(DFT)框架内对系统进行表征,并将μ介子建模为氢杂质。我们设计了一种自动化策略来获取候选的μ介子停滞点、它们与原子核的双极相互作用以及与电子基态的超频相互作用。我们在经过充分研究的化合物上验证了这一方法的实施,结果表明我们的方法在准确性和使用简便性方面都非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated computational workflows for muon spin spectroscopy
Positive muon spin rotation and relaxation spectroscopy is a well established experimental technique for studying materials. It provides a local probe that generally complements scattering techniques in the study of magnetic systems and represents a valuable alternative for materials that display strong incoherent scattering or neutron absorption. Computational methods can effectively quantify the microscopic interactions underlying the experimentally observed signal, thus substantially boosting the predictive power of this technique. Here, we present an efficient set of algorithms and workflows devoted to the automation of this task. In particular, we adopt the so-called DFT+{\mu} procedure, where the system is characterised in the density functional theory (DFT) framework with the muon modeled as a hydrogen impurity. We devise an automated strategy to obtain candidate muon stopping sites, their dipolar interaction with the nuclei, and hyperfine interactions with the electronic ground state. We validate the implementation on well-studied compounds, showing the effectiveness of our protocol in terms of accuracy and simplicity of use
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing a minimal Landau theory to stabilize desired quasicrystals Uncovering liquid-substrate fluctuation effects on crystal growth and disordered hyperuniformity of two-dimensional materials Exascale Quantum Mechanical Simulations: Navigating the Shifting Sands of Hardware and Software Influence of dislocations in multilayer graphene stacks: A phase field crystal study AHKASH: a new Hybrid particle-in-cell code for simulations of astrophysical collisionless plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1