氧空位介导的 Z-梯级机制促进羟基自由基和单线态氧的协同光电催化--合作选择性降解污染物

IF 7.4 Q1 ENGINEERING, ENVIRONMENTAL ACS ES&T engineering Pub Date : 2024-09-03 DOI:10.1021/acsestengg.4c00453
Duoduo Fang, Di Luo, Han Xiao, Jiaxing Li, Lin Ma, Jiangzhi Zi, Zichao Lian
{"title":"氧空位介导的 Z-梯级机制促进羟基自由基和单线态氧的协同光电催化--合作选择性降解污染物","authors":"Duoduo Fang, Di Luo, Han Xiao, Jiaxing Li, Lin Ma, Jiangzhi Zi, Zichao Lian","doi":"10.1021/acsestengg.4c00453","DOIUrl":null,"url":null,"abstract":"Achieving high effective degradation of organic pollutants in sewage having adverse effects on human health and ecosystems remains a major challenge. In this study, an oxygen vacancy (O<sub>v</sub>)-mediated Z-scheme Co<sub>3</sub>O<sub>4</sub>/O<sub>v</sub>-TiO<sub>2</sub> heterojunction was first reported for simultaneous selective photoelectrocatalytic pollutant degradation and hydrogen production under visible light irradiation. The optimized Co<sub>3</sub>O<sub>4</sub>/O<sub>v</sub>-TiO<sub>2</sub> exhibited excellent photoelectrocatalytic performance in the degradation of the organic pollutants under visible light irradiation due to the formation of a Z-scheme heterojunction for the utilization of highly reductive photogenerated electrons and oxidative holes. The mechanistic investigation suggested that the synergistic effects of hydroxyl radical and singlet oxygen as the dominant reactive species facilitated the ring-open reactions of the rhodamine B for the mineralization processes. This work provides a deep understanding of designing Z-scheme heterojunction photoelectrocatalysts through defect engineering technologies for sewage treatment.","PeriodicalId":7008,"journal":{"name":"ACS ES&T engineering","volume":"14 1","pages":""},"PeriodicalIF":7.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Oxygen Vacancies-Mediated Z-Scheme Mechanism Promotes Synergistic Photoelectrocatalysis for Hydroxyl Radical and Singlet Oxygen-Cooperating on Selective Pollutant Degradation\",\"authors\":\"Duoduo Fang, Di Luo, Han Xiao, Jiaxing Li, Lin Ma, Jiangzhi Zi, Zichao Lian\",\"doi\":\"10.1021/acsestengg.4c00453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Achieving high effective degradation of organic pollutants in sewage having adverse effects on human health and ecosystems remains a major challenge. In this study, an oxygen vacancy (O<sub>v</sub>)-mediated Z-scheme Co<sub>3</sub>O<sub>4</sub>/O<sub>v</sub>-TiO<sub>2</sub> heterojunction was first reported for simultaneous selective photoelectrocatalytic pollutant degradation and hydrogen production under visible light irradiation. The optimized Co<sub>3</sub>O<sub>4</sub>/O<sub>v</sub>-TiO<sub>2</sub> exhibited excellent photoelectrocatalytic performance in the degradation of the organic pollutants under visible light irradiation due to the formation of a Z-scheme heterojunction for the utilization of highly reductive photogenerated electrons and oxidative holes. The mechanistic investigation suggested that the synergistic effects of hydroxyl radical and singlet oxygen as the dominant reactive species facilitated the ring-open reactions of the rhodamine B for the mineralization processes. This work provides a deep understanding of designing Z-scheme heterojunction photoelectrocatalysts through defect engineering technologies for sewage treatment.\",\"PeriodicalId\":7008,\"journal\":{\"name\":\"ACS ES&T engineering\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS ES&T engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsestengg.4c00453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS ES&T engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsestengg.4c00453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

如何高效降解污水中对人类健康和生态系统产生不利影响的有机污染物仍然是一项重大挑战。本研究首次报道了一种由氧空位(Ov)介导的 Z 型 Co3O4/Ov-TiO2 异质结,可在可见光照射下同时进行选择性光电催化污染物降解和制氢。优化后的 Co3O4/Ov-TiO2 在可见光照射下降解有机污染物时表现出优异的光电催化性能,这是由于形成的 Z 型异质结利用了高还原性光生电子和氧化空穴。机理研究表明,羟基自由基和单线态氧作为主要活性物种的协同效应促进了罗丹明 B 的开环反应,从而实现矿化过程。这项工作为通过缺陷工程技术设计 Z 型异质结光电催化剂以用于污水处理提供了深入的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Oxygen Vacancies-Mediated Z-Scheme Mechanism Promotes Synergistic Photoelectrocatalysis for Hydroxyl Radical and Singlet Oxygen-Cooperating on Selective Pollutant Degradation
Achieving high effective degradation of organic pollutants in sewage having adverse effects on human health and ecosystems remains a major challenge. In this study, an oxygen vacancy (Ov)-mediated Z-scheme Co3O4/Ov-TiO2 heterojunction was first reported for simultaneous selective photoelectrocatalytic pollutant degradation and hydrogen production under visible light irradiation. The optimized Co3O4/Ov-TiO2 exhibited excellent photoelectrocatalytic performance in the degradation of the organic pollutants under visible light irradiation due to the formation of a Z-scheme heterojunction for the utilization of highly reductive photogenerated electrons and oxidative holes. The mechanistic investigation suggested that the synergistic effects of hydroxyl radical and singlet oxygen as the dominant reactive species facilitated the ring-open reactions of the rhodamine B for the mineralization processes. This work provides a deep understanding of designing Z-scheme heterojunction photoelectrocatalysts through defect engineering technologies for sewage treatment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS ES&T engineering
ACS ES&T engineering ENGINEERING, ENVIRONMENTAL-
CiteScore
8.50
自引率
0.00%
发文量
0
期刊介绍: ACS ES&T Engineering publishes impactful research and review articles across all realms of environmental technology and engineering, employing a rigorous peer-review process. As a specialized journal, it aims to provide an international platform for research and innovation, inviting contributions on materials technologies, processes, data analytics, and engineering systems that can effectively manage, protect, and remediate air, water, and soil quality, as well as treat wastes and recover resources. The journal encourages research that supports informed decision-making within complex engineered systems and is grounded in mechanistic science and analytics, describing intricate environmental engineering systems. It considers papers presenting novel advancements, spanning from laboratory discovery to field-based application. However, case or demonstration studies lacking significant scientific advancements and technological innovations are not within its scope. Contributions containing experimental and/or theoretical methods, rooted in engineering principles and integrated with knowledge from other disciplines, are welcomed.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Recognizing Excellence in Environmental Engineering Research: The 2023 ACS ES&T Engineering’s Best Paper Awards Review of Current and Future Indoor Air Purifying Technologies The Removal and Recovery of Non-orthophosphate from Wastewater: Current Practices and Future Directions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1