利用少量四元组重构半定向一级网络

Martin Frohn, Niels Holtgrefe, Leo van Iersel, Mark Jones, Steven Kelk
{"title":"利用少量四元组重构半定向一级网络","authors":"Martin Frohn, Niels Holtgrefe, Leo van Iersel, Mark Jones, Steven Kelk","doi":"arxiv-2409.06034","DOIUrl":null,"url":null,"abstract":"Semi-directed networks are partially directed graphs that model evolution\nwhere the directed edges represent reticulate evolutionary events. We present\nan algorithm that reconstructs binary $n$-leaf semi-directed level-1 networks\nin $O( n^2)$ time from its quarnets (4-leaf subnetworks). Our method assumes we\nhave direct access to all quarnets, yet uses only an asymptotically optimal\nnumber of $O(n \\log n)$ quarnets. Under group-based models of evolution with\nthe Jukes-Cantor or Kimura 2-parameter constraints, it has been shown that only\nfour-cycle quarnets and the splits of the other quarnets can practically be\ninferred with high accuracy from nucleotide sequence data. Our algorithm uses\nonly this information, assuming the network contains no triangles.\nAdditionally, we provide an $O(n^3)$ time algorithm that reconstructs the\nblobtree (or tree-of-blobs) of any binary $n$-leaf semi-directed network with\nunbounded level from $O(n^3)$ splits of its quarnets.","PeriodicalId":501044,"journal":{"name":"arXiv - QuanBio - Populations and Evolution","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconstructing semi-directed level-1 networks using few quarnets\",\"authors\":\"Martin Frohn, Niels Holtgrefe, Leo van Iersel, Mark Jones, Steven Kelk\",\"doi\":\"arxiv-2409.06034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semi-directed networks are partially directed graphs that model evolution\\nwhere the directed edges represent reticulate evolutionary events. We present\\nan algorithm that reconstructs binary $n$-leaf semi-directed level-1 networks\\nin $O( n^2)$ time from its quarnets (4-leaf subnetworks). Our method assumes we\\nhave direct access to all quarnets, yet uses only an asymptotically optimal\\nnumber of $O(n \\\\log n)$ quarnets. Under group-based models of evolution with\\nthe Jukes-Cantor or Kimura 2-parameter constraints, it has been shown that only\\nfour-cycle quarnets and the splits of the other quarnets can practically be\\ninferred with high accuracy from nucleotide sequence data. Our algorithm uses\\nonly this information, assuming the network contains no triangles.\\nAdditionally, we provide an $O(n^3)$ time algorithm that reconstructs the\\nblobtree (or tree-of-blobs) of any binary $n$-leaf semi-directed network with\\nunbounded level from $O(n^3)$ splits of its quarnets.\",\"PeriodicalId\":501044,\"journal\":{\"name\":\"arXiv - QuanBio - Populations and Evolution\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Populations and Evolution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Populations and Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

半定向网络是模拟进化的部分定向图,其中定向边代表网状进化事件。我们提出了一种算法,它能在 $O( n^2)$ 时间内从其 quarnets(4 叶子网络)重建二元 $n$ 叶半定向一级网络。我们的方法假设我们可以直接访问所有四元组,但只使用了渐近最优的 $O(n \log n)$ 四元组。在具有朱克斯-康托(Jukes-Cantor)或木村(Kimura)2参数约束的基于群体的进化模型下,已经证明实际上只有四周期夸克群和其他夸克群的分裂可以从核苷酸序列数据中高精度地推断出来。此外,我们还提供了一种耗时 $O(n^3)$ 的算法,它可以从其四元组的 $O(n^3)$ 分裂中重建任意二元 $n$ 叶半定向网络的无界级球树(或球树)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reconstructing semi-directed level-1 networks using few quarnets
Semi-directed networks are partially directed graphs that model evolution where the directed edges represent reticulate evolutionary events. We present an algorithm that reconstructs binary $n$-leaf semi-directed level-1 networks in $O( n^2)$ time from its quarnets (4-leaf subnetworks). Our method assumes we have direct access to all quarnets, yet uses only an asymptotically optimal number of $O(n \log n)$ quarnets. Under group-based models of evolution with the Jukes-Cantor or Kimura 2-parameter constraints, it has been shown that only four-cycle quarnets and the splits of the other quarnets can practically be inferred with high accuracy from nucleotide sequence data. Our algorithm uses only this information, assuming the network contains no triangles. Additionally, we provide an $O(n^3)$ time algorithm that reconstructs the blobtree (or tree-of-blobs) of any binary $n$-leaf semi-directed network with unbounded level from $O(n^3)$ splits of its quarnets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biological arrow of time: Emergence of tangled information hierarchies and self-modelling dynamics k-mer-based approaches to bridging pangenomics and population genetics A weather-driven mathematical model of Culex population abundance and the impact of vector control interventions Dynamics of solutions to a multi-patch epidemic model with a saturation incidence mechanism Higher-order interactions in random Lotka-Volterra communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1