生物智能的进化

Takuya Isomura
{"title":"生物智能的进化","authors":"Takuya Isomura","doi":"arxiv-2409.04928","DOIUrl":null,"url":null,"abstract":"Characterising the intelligence of biological organisms is challenging. This\nwork considers intelligent algorithms developed evolutionarily within neural\nsystems. Mathematical analyses unveil a natural equivalence between canonical\nneural networks, variational Bayesian inference under a class of partially\nobservable Markov decision processes, and differentiable Turing machines, by\nshowing that they minimise the shared Helmholtz energy. Consequently, canonical\nneural networks can biologically plausibly equip Turing machines and conduct\nvariational Bayesian inferences of external Turing machines in the environment.\nApplying Helmholtz energy minimisation at the species level facilitates\nderiving active Bayesian model selection inherent in natural selection,\nresulting in the emergence of adaptive algorithms. In particular, canonical\nneural networks with two mental actions can separately learn transition\nmappings of multiple Turing machines. These propositions were corroborated by\nnumerical simulations of algorithm implementation and neural network evolution.\nThese notions offer a universal characterisation of biological intelligence\nemerging from evolution in terms of Bayesian model selection and belief\nupdating.","PeriodicalId":501044,"journal":{"name":"arXiv - QuanBio - Populations and Evolution","volume":"8 3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolutionary emergence of biological intelligence\",\"authors\":\"Takuya Isomura\",\"doi\":\"arxiv-2409.04928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Characterising the intelligence of biological organisms is challenging. This\\nwork considers intelligent algorithms developed evolutionarily within neural\\nsystems. Mathematical analyses unveil a natural equivalence between canonical\\nneural networks, variational Bayesian inference under a class of partially\\nobservable Markov decision processes, and differentiable Turing machines, by\\nshowing that they minimise the shared Helmholtz energy. Consequently, canonical\\nneural networks can biologically plausibly equip Turing machines and conduct\\nvariational Bayesian inferences of external Turing machines in the environment.\\nApplying Helmholtz energy minimisation at the species level facilitates\\nderiving active Bayesian model selection inherent in natural selection,\\nresulting in the emergence of adaptive algorithms. In particular, canonical\\nneural networks with two mental actions can separately learn transition\\nmappings of multiple Turing machines. These propositions were corroborated by\\nnumerical simulations of algorithm implementation and neural network evolution.\\nThese notions offer a universal characterisation of biological intelligence\\nemerging from evolution in terms of Bayesian model selection and belief\\nupdating.\",\"PeriodicalId\":501044,\"journal\":{\"name\":\"arXiv - QuanBio - Populations and Evolution\",\"volume\":\"8 3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuanBio - Populations and Evolution\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuanBio - Populations and Evolution","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

描述生物有机体的智能具有挑战性。本研究考虑了在神经系统内进化发展的智能算法。数学分析揭示了典型神经网络、一类部分可观测的马尔可夫决策过程下的变分贝叶斯推理和可微分图灵机之间的自然等价关系,表明它们能使共享的亥姆霍兹能量最小化。因此,典型神经网络可以在生物学上合理地装备图灵机,并对环境中的外部图灵机进行变量贝叶斯推断。在物种水平上应用亥姆霍兹能量最小化,有助于实现自然选择中固有的主动贝叶斯模型选择,从而产生自适应算法。特别是,具有两种心理行为的典型神经网络可以分别学习多个图灵机的过渡映射。这些概念从贝叶斯模型选择和信念更新的角度为生物智能的进化提供了普遍的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolutionary emergence of biological intelligence
Characterising the intelligence of biological organisms is challenging. This work considers intelligent algorithms developed evolutionarily within neural systems. Mathematical analyses unveil a natural equivalence between canonical neural networks, variational Bayesian inference under a class of partially observable Markov decision processes, and differentiable Turing machines, by showing that they minimise the shared Helmholtz energy. Consequently, canonical neural networks can biologically plausibly equip Turing machines and conduct variational Bayesian inferences of external Turing machines in the environment. Applying Helmholtz energy minimisation at the species level facilitates deriving active Bayesian model selection inherent in natural selection, resulting in the emergence of adaptive algorithms. In particular, canonical neural networks with two mental actions can separately learn transition mappings of multiple Turing machines. These propositions were corroborated by numerical simulations of algorithm implementation and neural network evolution. These notions offer a universal characterisation of biological intelligence emerging from evolution in terms of Bayesian model selection and belief updating.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Biological arrow of time: Emergence of tangled information hierarchies and self-modelling dynamics k-mer-based approaches to bridging pangenomics and population genetics A weather-driven mathematical model of Culex population abundance and the impact of vector control interventions Dynamics of solutions to a multi-patch epidemic model with a saturation incidence mechanism Higher-order interactions in random Lotka-Volterra communities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1